

Talk Outline:

- Introduction

 Conceptual background
 Natural history

 Mayfly case study
- Implications

Population Biology: How many are there?

 $N_{t+1} = N_t + Births - Deaths + Immigrants - Emigrants$

Population Biology: Historical assumption

 $N_{t+1} = N_t + Births - Deaths + Immigrants - Emigrants$

Closed Population Immigration = Emigration

Metapopulation: Levins (1969, 1970)

Population of populations, connected by some degree of dispersal

Metapopulation: Levins (1969, 1970)

Population of populations, connected by some degree of dispersal.

Problem-driven Investigations: Collect data to address hypotheses about a specific species, population. "Applied" science.

Concept-driven Investigations: Collect data to address general hypotheses. Find a system amenable to question. "Basic" science.

Life Cycle of Callibaetis ferrugineus hageni:

Size-Fecundity, Callibaetis

Female Mesonotum Length (mm)

Populations of populations

After Harrison and Taylor 1997

Talk Outline:

- Introduction

 Conceptual background
 Natural history

 Mayfly case study
- Implications

Spatial Patterns of Abundance:

After Harrison and Taylor 1997

-Which model best describes the *Callibaetis* metapopulation?

Nonselective Dispersal: Source-Sink Dynamic

Selective Dispersal Balanced Dispersal Dynamic

Patch with high K

Patch with low K

No net import or export of eggs

Microhabitat Scale: Adult Emergence Rate from the Sedge Microhabitat

Emigration Index (EI): Closed Populations

EI_i = Recruitment_{expected} / Recruitment_{observed}

where

 $Recruitment_{expected} = N_i * Fecundity_i * Mortality_{adult}$

Emigration Index (EI): Source Sink Dynamic:

Source = Net Exporter:

Sink = Net Importer:

EI > 1

EI < 1

Emigration Index (EI): Balanced Dispersal:

High K:

Low K:

Production Recruitment

Production Recruitment

EI = 1

EI = 1

Emigration Index

w/ Observed Adult Mortality Rate

- Conclusions: Patterns of Abundance:
 - Source-Sink Metapopulation:
 - Large Differences in Emergence Rate
 - Local Production \neq Local Recruitment
 - Emigration Index: Net Migration
 - Non-Selective Oviposition
- Mayfly as model system

Objectives:
Spatial Patterns
Patch Quality (Fish)
Dispersal
Larval Plasticity

Trout Density by Treatment

Trout Density by Treatment

Local Population Growth Rate:

$$\lambda = S_{(larvae)i} * S_{(adults)} * F_i$$

$$\lambda > 1 =$$
Source
 $\lambda < 1 =$ Sink

Do Trout Reduce Patch Quality? *Callibaetis* Population Growth Rate (λ):

Conclusions:
Patch Quality

Trout reduce λ
> 1 Trout 100 m⁻² = Sink
< 1 Trout 100 m⁻² ~ Source

• Objectives:

- Spatial Patterns

- Patch Quality

- Dispersal

🗹 - Larval Plasticity

Ovipositing Females

Swarming Males

Conclusions: • Dispersal: -Strongly Sex-Biased -Consistent w/ mating system -High Patch Exchange Rate

• Objectives:

- Spatial Patterns
- Patch Quality
- Dispersal
- Larval Responses

"Appropriate" Antipredator Traits:

- Behavior:
 - Reduced Activity
 - Increased Crypsis

- Life History:
 - Reduced Growth Rate
 - Accelerated Development
 - Altered Size at Maturity

Field Populations:

 Timing of Emergence
 Size at Emergence

Tank Experiment:

 Timing of Emergence
 Size at Emergence
 Behavior

Date of Emergence from Field Populations

Size at Emergence from Field Populations

Development Rate in Tanks

Size at Emergence from Tanks

Larval Mayfly Behavior in Tanks:

Conclusions:

- Larval Responses (Not!):
 No Life History Shift
 No Effect of Trout on Size
 No Anti-predator Behavior
 - Increased Activity Late in Development

Speculation:

• Why Not?

Introduced Predator? Do non-native trout create "ecological traps"?
 Vulnerable to Native Trout
 Strong Response in *Baetis* Need to test

Speculation:

- Why Not?
 - Introduced Predator? Lack of Trade-off?
 - Phylogenetic Inertia
 - Ephemeral Larval Habitat
 - Appropriate Anti-Invertebrate Behavior

Speculation:

- Why Not?
 - **Introduced** Predator?
 - Lack of Trade-off?
 - Phylogenetic Inertia
 - Ephemeral Larval Habitat
 - Appropriate Anti-Invertebrate Behavior
 - Dispersal from Sources to Sinks

Summary

- Source-Sink Metapopulation:
 - Life History
 - Dispersal / Habitat Selection Behavior
 - Larval Behavior
 - Predator Distribution

After Harrison and Taylor 1997

Traditional View of Complex Life Cycles: (Most plants, invertebrates, amphibians, and fishes)

Complex life cycles in spatially complex habitats:

Source-sink dynamics may be common in groups with "constrained" dispersal:

- Social (Territorial):
 - Birds
 - Mammals
 - some fishes

Source-sink dynamics may be common in groups with "constrained" dispersal:

- Social (Territorial):
 - Birds
 - Mammals
 - some fishes

- "Passive" dispersal:
 - Plankton
 - Marine invertebrates
 - Pathogens
 - Plants
 - Agricultural Pests
 - Algae
 - Marine & FW Fishes
- **Bold = Commercially Important** Aquatic insects

Management Implications

- Behavior and habitat quality interact to determine regional population dynamic
- Imperative to identify sources
 - Conservation Targets
 - Pests / Pathogens / Invasive species (e.g, Eurasian Water Milfoil)
- Management of "Patch Quality"

 Trout stocking programs
 "Ecological Traps"

