

Population Change

- Future population size can be predicted from current population size and its rate of change:
- \blacksquare $N_{t+1} = N_t x$ (rate of change)
- $\blacksquare N_{t+1} = N_t \ \lambda$
- $\lambda = finite rate of increase$
- $\bullet \lambda = N_{t+1} / N_t$
- If population is constant $\lambda = 1.0$

Future Population Size

- If rate of change is constant then
- $\blacksquare N_{t} = N_{0} e^{rt}$
- $\blacksquare \ln N_{t} = \ln N_{0} + rt$
- Equation for a straight line:
- *y* = *a* + *bx*

Demography

- Future population is a result of the interplay between internal characteristics and processes and extrinsic forces and processes.
- We will begin by focusing on the internal factors the demographics.

Population Change

- Speed of population change is referred to as rate of increase.
- Change results from interplay between fecundity rate, mortality rate, and composition (age distribution and sex ratio).

Instantaneous Rate of Change

Sometimes its better to express the finite rate of increase as an instanteous (or exponential) rate of increase (r):

$$\bullet \quad \lambda = N_{t+1} / N_t = e^r$$

- $\blacksquare \ln \lambda = \log_{e} \lambda = r$
- If population is constant then r = 0

- Finite rate of increase:
- $\lambda = N_{t+1} / N_t$
- Instantaneous rate of increase:
- Regress In N, on t
- $r = (\ln N_{t} \ln N_{0}) / t$

Rate of change

- Change results from balance between rates of increase and
- decrease Increase: Births + Immigrants
- Decrease: Deaths + Emigrants
- $\Delta N = (B + I) (D + E)$
- Immigrants and Emigrants are samll in number and depend on other populations so we'll simplify it by ignoring them (for a while).

Life table

- x = age (years)
- $f_x = n_x =$ Survival frequency
- I = Survivorship
- $\blacksquare d_{x} = Mortality$
- $q_x = Mortality rate$

Static Life Table (Catch Curvel

	U UU		
Ages of I	nale reindeer,	Sou	th Georgia
Island			

- Age
- f, 78 • 0
- 40 ■ 1
- 2 19
- **3** 14
- 4 10
- **5** 5

Rate of change

- What really determines the rate of change (increase or decrease) in a population?
- Births?
- Deaths?
- Immigrants?
- Emigrants?

Deaths = Mortality

- What do mortality rates depend on?
- Age? Population size? Resources?
- Summarize mortality in a life table

Cohort Life Table

Survival of male Song Sparrows hatched in 1976 on Mandarte Island, BC Age t_x 115 • 0

- 25 1
- 19 ∎2
- **3** 12
- 2 ∎ 4 1
- **5** 0
- **6**

Constructing a Life Table Standardize to I ₀ = 1.0				
		South Geo	Ŭ	
■ Age	I _x	$f_{\rm x}/f_0 = 1$	A A	·
■ 0	78	78/78	1.000	0.487
■ 1	40	40/78	0.513	0.269
■2	19	19/78	0.244	0.064
3	14	14/78	0.179	0.051
4	10	10/78	0.128	0.641
■5	5	5/78	0.064	0.064

Constructing a Life			
		Ιαρι	e
	ndeer,	South Geo	orgia Island
■ Age	I _x	I _x	$d_x q_x$
• 0	78	1.000	0.487 0.487
1	40	0.513	0.269 0.525
■2 ■3	19 14	0.244	0.064 0.263 0.051
•	14	0.179	0.001
0.286 4	10	0.128	0.641
0.500			
5	5	0.064	0.064
1.000			

Expanded Life Table - Females Add fecundity				
	(m _x =female offspring per female age x)			
■ Age(x	;) 1 _x 1	m _x	l _x m _x l _x r	n _x x
0	1.000	0.0	0.0	0.0
■ 1	0.8	0.6	0.48	0.48
■2	0.7	1.0	0.7	1.4
3	0.6	1.0	0.6	1.8
4	0.0	0	0	0
Sur	n		1.78	3.68
•			(fitness)

- Fitness defined as $\sum I_x m_x$ for a genotype
- This fundamental formula is at the heart of both demographic and genetic analyses for a population
- It is very clever because it combines both survival(I_x) and fecundity(m_x)

Finite Growth Rate

α λ -	1.32	
= <i>t</i>	N,	
0	10	
1	13	
■2	17	
3	23	
4	30	
5	40	

Continuous Growth Model

- $\blacksquare N_{t} = N_{0} e^{rt}$
- $\blacksquare \ln N_{t} = \ln N_{0} + rt$
- Plot of In N, vs. t is a straight line
- slope of line is r

Is this correct?

- What assumptions must be true?
- Rate of increase (λ or r) is constant.
- Stable age distribution in the population.

- What is value of this?
- λ and r are good descriptions for either a simple population or a more complex population.
- Our simple models to predict (or analyze) population growth might work surprisingly well.
- $\blacksquare N_{t+1} = N_t \ \lambda$

Stable Age Distribution

Lotka (1922) showed that a population that is subject to a constant schedule of birth and death rates will gradually approach a fixed or stable age distribution, whatever the initial age distribution may have been, and will maintain this age distribution indefinitely.

