Demography

Demography

- Future population is a result of the interplay between internal characteristics and processes and extrinsic forces and processes.
- We will begin by focusing on the internal factors - the demographics.

Future Population Size

- Predicting future population size requires understanding the internal workings of the population.
■ We learn about these "workings" by observing changes in populations and looking for principles which would allow us to predict them.

Population Change

- Future population size can be predicted from current population size and its rate of change:
$-N_{\mathrm{t}+1}=N_{\mathrm{t}} \times$ (rate of change)
- $N_{\mathrm{t}+1}=N_{\mathrm{t}} \lambda$
- $\lambda=$ finite rate of increase
- $\lambda=N_{\mathrm{t}+1} / N_{\mathrm{t}}$
- If population is constant $\lambda=1.0$

Population Change

- Speed of population change is referred to as rate of increase.
- Change results from interplay between fecundity rate, mortality rate, and composition (age distribution and sex ratio).

Instantaneous Rate of Change

- Sometimes its better to express the finite rate of increase as an instanteous (or exponential) rate of increase (r):
- $\lambda=N_{\mathrm{t}+1} / N_{\mathrm{t}}=e^{\mathrm{r}}$
- In $\lambda=\log _{\mathrm{e}} \lambda=r$
- If population is constant then $r=0$

Future Population Size

- If rate of change is constant then
- $N_{\mathrm{t}}=N_{0} \mathrm{e}^{\mathrm{rt}}$
$-\ln N_{\mathrm{t}}=\ln N_{0}+r t$
- Equation for a straight line:
- $y=a+b x$

Examples:

Estimating rate of increase

- Finite rate of increase:
- $\lambda=N_{\mathrm{t}+1} / N_{\mathrm{t}}$
- Instantaneous rate of increase:
- Regress $\ln N_{t}$ on t
$-r=\left(\ln N_{\mathrm{t}}-\ln N_{0}\right) / t$

Rate of change

- What really determines the rate of change (increase or decrease) in a population?
- Births?
- Deaths?
- Immigrants?
- Emigrants?

Rate of change

- Change results from balance between rates of increase and decrease
- Increase: Births + Immigrants
- Decrease: Deaths + Emigrants
- $\Delta N=(B+I)-(D+E)$
- Immigrants and Emigrants are samll in number and depend on other populations so we'll simplify it by ignoring them (for a while).

Life table

- $x=$ age (years)
- $f_{\mathrm{x}}=n_{\mathrm{x}}=$ Survival frequency
- $I_{\mathrm{x}}=$ Survivorship
- $d_{\mathrm{x}}=$ Mortality
- $q_{x}=$ Mortality rate

Deaths $=$ Mortality

- What do mortality rates depend on?
- Age? Population size? Resources?
- Summarize mortality in a life table

Constructing a Life Table

- Male reindeer, South Georgia Island

- Age

- 0

-1
- 3
f

40

$19 \begin{array}{llll}19 & 0.244 & 0.064 & 0.263\end{array}$ र. 487
0.487
$14 \quad 0.179 \quad 0.051$

- 4.286
$10 \quad 0.128$
0.641
$\square .500$
$5 \quad 0.064$
0.064
1.000

Examples of

Population

Characteristics

- $R_{0}=$ Net Reproductive Rate

 (Fitness)No. daughters generation $t+1$

- $=$

No. females generation t
- $\quad \Sigma l_{x} m_{x}$

■ = ------------ $=-------=1.78$

- Sum
-

(fitness)

Fitness

- Fitness defined as $\Sigma l_{\mathrm{x}} m_{\mathrm{x}}$ for a genotype
- This fundamental formula is at the heart of both demographic and genetic analyses for a population
-It is very clever because it combines both survival(I_{x}) and fecundity $\left(m_{x}\right)$

Population

Characteristics

$$
\begin{aligned}
& \text { - G = Mean length of a generation } \\
& \text { - = Mean period elapsing between } \\
& \text { - birth of parents and birth of offspring } \\
& \text { - } \quad \Sigma l_{\mathrm{x}} m_{\mathrm{x}} x \quad 3.68 \\
& \text { - = } \\
& \text {------------ = } \\
& \text { = ------- } \\
& =2.07 \\
& \text { - } \quad \Sigma I_{x} m_{x} \quad 1.78
\end{aligned}
$$

Population

Characteristics

- $\quad \ln \left(R_{0}\right) \quad \ln (1.78)$
- $r=$ \qquad -------- = 0.28
- G 2.07
$■ \lambda=e^{r}=e^{0.28}=1.32$
- $1=\left.\Sigma e^{-\mathrm{rx}}\right|_{\mathrm{x}} m_{\mathrm{x}}$

■ Note: First 2 equations are approximations, but solving this last equation iteratively is exactly correct.

Finite Growth Rate

■ $\lambda=1.32$

- $t \quad N_{t}$
- 010
- 113
- 217
- 323
- 430
- 540

Continuous Growth Model

- $N_{\mathrm{t}}=N_{0} \mathrm{e}^{\mathrm{rt}}$
$-\ln N_{\mathrm{t}}=\ln N_{0}+r t$
- Plot of In N_{t} vs. t is a straight line
- slope of line is r
- What is value of this?
- λ and r are good descriptions for either a simple population or a more complex population.
- Our simple models to predict (or
analyze) population growth might

Our simple models to predict (or
analyze) population growth might work surprisingly well.

- $N_{\mathrm{t}+1}=N_{\mathrm{t}} \lambda$

So What?

Stable Age Distribution

- Lotka (1922) showed that a population that is subject to a constant schedule of birth and death rates will gradually approach a fixed or stable age distribution, whatever the initial age distribution may have been, and will maintain this age distribution indefinitely.

Stable Age Distribution

- $C_{x}=$ proportion of population in age category x to $x+1$
- Mertz (1970) showed that
- $C_{x}=\lambda^{-\mathrm{x}} I_{\mathrm{x}} / \sum \lambda^{-\mathrm{x}} I_{\mathrm{x}}$
- Even if a population starts out with a different age distribution it will attain this stable age distribution after a while

Stable Age Distribution

- Age($($)	l_{x}	λ^{-x}	$\mathrm{l}_{\mathrm{x}} \mathrm{C}_{\mathrm{x}}$	
- 0	1.000	1.0	1.0	0.44
-1	0.8	0.758	0.606	0.27
- 2	0.7	0.574	0.402	0.18
- 3	0.6	0.435	0.261	0.11
- 4	0.0	0.329	0	0
- Sum			2.269	

Rate of increase declines with N_{t}

