Evolutionary Aspects of Population Ecology

- Why do populations have the characteristics and rates they do?
- How can knowledge of these rates help predict the response of populations to changing conditions?

Evolutionary Aspects

- Evolution occurs over long time scales
- Management action occurs over much shorter ("ecological") time scales

 Often need to make decisions with little specific data. Knowledge of a species life history can help bound possibilities

Life history traits and demographic rates are product evolutionary history

- Iteroparity (one-time reproduction) vs.
 semelparity (repeat breeder)
- Metamorphosis; niche shifts

- Fecundity
- Age at first reproduction
- Parental care
- Migration/Anadromy

shifts

Life history traits

- May differ between closely related species
 Semelparity vs. iteroparity in salmonids
- Among populations of the same species
 - Anadromy in *O. mykiss*:
 - Rainbow trout (resident freshwater)
 - Steelhead (sea-run rainbow trout)
- or even among individuals in the same population
 - Anadromy: residual steelhead
 - Age at 1st reproduction: early return by "jacks"

Evolutionary strategies

Evolutionary strategies

- Robert Mac Arthur and Ed Wilson (1967) suggested in their pioneering work on Island Biogeography that:
 - On arrival to an island "in an environment with no crowding (r selection) genotypes which harvest the most food will be most fit..." whereas
 - "in a crowded area (K selection), genotypes which can at least replace themselves with a small family at the lowest food level will win."

Evolutionary strategies

 Pianka (1970) expanded on these ideas and suggested species fall on a continuum with two endpoints:

r selected

- Rapid development
- Early reproduction
- small body size
- semelparity (annual)

K selected

- -slow development
- -late reproduction
- -large body size
- -iteroparity (perennial)

 At the beginning of any given breeding season, an individual must make several "decisions" with the goal of maximizing:

$$\lambda = S f$$

where S = survival rate and f = fecundity

- First decision: Breed?
 - Age at first reproduction
 - Size and fecundity
 - Grow and become more fecund, but risk death & no fitness?
 - pre-reproductive mortality stronger selective force than postbreeding mortality
 - May differ by species, sex, population
 - May differ through time

- If breeding, how much effort?
- Reproductive effort:
 - RE is the resources consumed during reproduction
 - propagules
 - migration
 - parental care
 - RE = total weight of propagules / Total biomass at maturity
 - = gonadosomatic index (GSI)
- High RE reduces parental survival (Roff 1992: 116)
- Expend all (semelparity) or only some (iteroparity)?

- Reproductive effort divided among
 - Offspring number and offspring size
 - Many small eggs vs. a few big eggs
 - Parental care: Yes?, No?, if so, How much?
 - Pre-breeding: redd building by salmon, egg size, content in fishes
 - Post-breeding: feeding of nestlings
 - Number of broods per season

Three example life history decisions

 Under what circumstances will fitness be maximized by the devotion of so much effort during first reproductive event that death ensues (semelparity)?

• Factors affecting clutch size in birds

• Evolution of diadromy in fishes

- Annual vs. perennial plants
- Varies among species and populations of fishes:
 - Salmonids
 - American shad of east coast U.S. (Glebe and Leggett 1981)
 - coastal vs. interior populations of steelhead
- What happens when we alter the costs of reproduction and RE?

- Cole (1954) asked the question: what effect does repeated reproduction have on r?
- Life table analysis

- Cole (1954) concluded that the maximum gain for switching to iteroparity is equivalent to adding one individual to the average brood size for the semelparous case.
- In other words, annual with single brood of 101 has equal fitness as perennial with multiple broods of 100!
- Why? Even in best case (perfect survival after reproduction), older perennial individuals are contributing not much more than offspring of annual.

• But most species are iteroparous! Why?

- But most species are iteroparous! Why?
- Unrealistic assumptions:
- Constant conditions

- But most species are iteroparous! Why?
- Unrealistic assumptions:
- Constant conditions
- No cost to reproduction—survival was not linked to fecundity
- Nonetheless, very useful model for understanding how fitness changes with reproduction schedule:
- Reproductive value = V_x = How much is an individual of a given age worth in terms of future offspring.
 - When is V_x highest?

- Semelparity is favored
 - when reproductive success increases *only* when RE is high (Pacific salmon?) or
 - when mortality in reproductive stages is high compared to juvenile stages (American shad, mayflies)

- Semelparity is favored
 - when reproductive success increases *only* when RE is high (Pacific salmon?) or
 - when mortality in reproductive stages is high compared to juvenile stages (American shad, mayflies)
- Iteroparity is favored when
 - reproductive success is relatively high at low RE or
 - when survival rates in juveniles are poor and/or unpredictable compared to adult stages

- Leggett and Carscadden (1978) and Glebe and Leggett (1981) compared life history traits of populations of American shad along east coast of North America.
- All adults share the same ocean habitat (Gulf Stream)
- Observed strong differences in life history:
 - Connecticut River, CT
 - York River, VA
 - St. John's River, FL

- At the time of river entry, gonadosomatic index (GSI) was higher in Connecticut River than St. John's River, but eggs/mass higher for St. John's females.
 - In CT population, all ova were mature at river entry
 - ~25% of somatic energy reserves transferred to eggs in FL population during upstream migration
 - Total energy / egg was similar
 - Timing of development and energy allocation differed between populations

• Latitudinal pattern:

•	<u>Population</u>	% Repeat Spawn	% Energy Consumed
•	New Brunswick	70%	
•	Connecticut	35%	40-60%
•	York River, VA	25%	30%
•	St. John's R., FL	0%	70-80%

Glebe and Leggett 1981

- What factors explain the latitudinal gradient?
- <u>Proximate:</u> Energetics during migration and reproduction:
 - Northern populations: 40% upstream migration, +
 0% egg development + 15% outmigration = 55%
 - Southern populations: 50% upstream migration + 0% outmigration (died) + 30% gonad growth = 80%

- What factors explain the latitudinal gradient?
- <u>Ultimate?</u>:
- Temperature—warmer in FL = higher metabolic rates? Simply a population at edge of range?

- What factors explain the latitudinal gradient?
- <u>Ultimate?</u>:
- Temperature—warmer in FL = higher metabolic rates and costs of migration
- Predictability in spring warming, run-off, and food supply higher in Florida than New England ~ safer to put all the eggs in one basket...

General rule for fishes?

 Glebe and Leggett (1981) suggested that when adults expend more than a threshold value (~70%) of their energetic reserves during migration and spawning, the population is semelparous (Figure 13 of Glebe and Leggett 1981)

Lack 1966, 1968

- Reproductive rate depends on:
 - Number of eggs laid / clutch
 - Number of clutches laid / year
 - Age at first reproduction
- Clutch size
 - Increases during high food conditions (Cody 1966)
 - Increases with lattitude

- Many species have a characteristic clutch size:
 - Petrel = 1
 - Pigeon = 2
 - Gull = 3
 - Duck = 7-12
 - Partridge = 10-20
- Why have a specific clutch size?
 Why not a larger clutch size?

1) Mechanical / physiological constraints

• Only so many eggs can be produced inside body the cavity or with available resources

• Does the observed clutch size reflect mechanical/physiological constraints?

- How could we test?

1) Mechanical / physiological constraints

• Only so many eggs can be produced inside body the cavity or with available resources

- Does the observed clutch size reflect mechanical/physiological constraints?
 - How could we test (for indeterminate layers)?
 - Remove eggs—does female lay more eggs?

2) Incubation

Clutch size is limited by number of eggs the sitting bird can cover

3) Mortality

 Past mortality during rearing (natural selection) has adjusted the clutch size to maximize the number of offspring—clutches that were too large were selected against

4) Food

 In most birds, clutch-size has evolved through natural selection to correspond with the largest number of young for which the parents can, on the average, find food.

Food to nestlings

• House Wrens

 Brood size 	Trips	Trips/Nestling
1	115	115
2	156	78
3	198	66
4	236	59
5	270	54
6	300	50

The Lack value

• The Lack value (the clutch size that produces the largest number of offspring) is probably incorrect for at least two reasons:

The Lack value

- The Lack value (the clutch size that produces the largest number of offspring) is probably incorrect for at least two reasons:
 - Effects of large clutch size on parent survival or future fecundity

The Lack value

- The Lack value (the clutch size that produces the largest number of offspring) is probably incorrect for at least two reasons:
 - Effects of large clutch size on parent survival or future fecundity
 - Environmental variability

- Diadromy-use of ocean and freshwater
- Anadromy-freshwater reproduction, ocean feeding
- Catadromy-ocean reproduction, freshwater feeding
- Remember: $\lambda = S f$

- Diadromy-use of ocean and freshwater
- Anadromy-freshwater reproduction, ocean feeding
- Catadromy-ocean reproduction, freshwater feeding
- Remember: $\lambda = S f$

$$= (S_{FW} S_{ocean}) (f_{FW} + f_{ocean})$$

• Remember: $\lambda = S f$

$$= (S_{FW} S_{ocean}) (f_{FW} + f_{ocean})$$

assume f ~ growth

S_{FW} / S_{ocean} in early life history stages determines where to spawn

 f_{FW} / f_{ocean} determines where to feed

S_{FW} / S_{ocean} in early life history stages determines where to spawn

 f_{FW} / f_{ocean} determines where to feed

Predictions? Salmon Eels

What data could we collect to test?

Gross et al. (1988)

Gross et al. (1988)

Summary

- Evolution (and ecology) shape the life histories of species, populations, and individuals
- Life history theory can help clarify which selective forces may have been important in the past and
- Which selective forces could have the greatest effect in the future

Summary

- Can use life history theory to understand potential future conditions
 - Increased energetic costs during migration?
 - Increased food supply during nesting period?