Line Transect

Line Transect/Point Count

- Line transects and point counts are used widely to count animals.
- They are variants of the same approach.
- We will begin with transects which are somewhat simpler to describe.

Line Transect

- Typical Layout:

Line Transect

- $D=$ density $=N / A$
= (number counted)/(area covered)
- $\quad=n / 2 L w\left(o r=n / k \pi r^{2}\right)$
- $n=$ number of animals counted
- L=length of the transect
- ($k=n o . p o i n t s ~ c o u n t e d) ~$
- w = effective width
- (r = effective radius)

Field Experiment

- Test these ideas with a known N
- Old Arboretum
- Place birds in a known area (A)
- Estimate their density with
- Line transects and point counts

Field Exercise

Apply line transects and point counts to estimating the number of birds in parks and residential areas in Moscow

- Each person walk at least 2 blocks or (200 m) each in parks and in residential areas or do atleast 4 point counts in each area
- Minimum count required: 20 groups of birds in each "habitat"
- Note: For birds (or other animals) in groups record each group as a single observation. The density estimate will be for groups of birds which you would multiply by average group size to estimate birds per unit area (hectare).

Field Exercise

 birds per unit area (hectare).
Assumptions:

- 1. Animals are randomly and independently distributed over the population area.
- 2. The sighting of one animal is independent of the sighting of another.
- 3.No animal is counted more than once.
- 4. Animals are detected at their intial location prior to disturbance by 抓尼 qesspbkere behavior of the population as a whole does not change during the course of the
- 6ẹा\$ł\&Sanimals are homogeneous with regard to their response behavior, regardless of sex, age, etc.

■ 7. The probability of an animal being seen, given that it is a right-angle distance from the line transect path (irrespective of which side of the path it is on), is a simple function $g(y)$ of y, such that $g(0)=1$ (i.e. probability 1 of seeing an animal on the path is 1.0).

Distance Sampling: Key References

- Seber, G.A.F. 1973. The Estimation of Animal Abundance.
- Bufnarand, N. S.T., D.R. Anderson, K.P. Burnham, J.L. Laake D. L. Borchers and L. Thomas. 2001. Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press, Oxford.

Seber (1973)

- Detection Curve = g(y)
- $g(y)=$ Prob.(animal seen |animal at y)
- Observed Detection Function = $f(y)$
- $f(y)=$ Prob.(animal at $y \mid$ animal seen)
- If set $w=$ Integral of $g(y) d y$
- Then $f(y)=g(y) / w$

Examples of $f(y)=$ detections
\square

New Approach to Density

- Find a function which fits $f(y)$ well
- Then, assuming that all animals directly on the line $(y=0)$ are detected
- $g(0)=1$
- From $f(y)=g(y) / w$
- $f(0)=g(0) / w=1 / w$
- So Estimate of $w=1 / f(0)$

Density Estimate

- How do we estimate density?
- Old approach:
- Make an assumption about $g(y)$
- Derive an estimator
- Find parametiers
- calculate it

Density Estimate

- $D^{\wedge}=n / 2 L W$
- $D^{\wedge}=n f(0) / 2 L$
- So we must find a function $f(y)$ which fits the observed detection distance curve well and then determine $f(0)$
- Note: In Lecture Outline notes on web w is symbolized by a

Detection Curve

- What is a good model for $f(y)$?
- 30+ proposed and used
- Buckland et al. 2001 criteria
- a. Model robustness (flexible)
- b. Pooling robustness
- c. Shape criterion (shoulder)
- d. Efficiency (small variance)

Key functions

- Uniform
- 1/w
- Half-normal
- $-\mathrm{y}^{2} / 2 \mathrm{~s}^{2}$
- e
- Hazard-rate
- $-(y / s)^{-\mathrm{b}}$
- 1-e

Truncation

Often required to find a good model and get a good fit (outliers).

- Recommend truncating observations beyond distance at which prob. detection falls below 10%.
- Use this to judge requirement for adjustment terms to a key function
- Allows evaluating whether addition of m_{2} terms to m_{1} already in model significantly improves it.
- H_{0} : Model W / m_{1} adjustments is true model
- H_{a} : Model $w / m_{1}+m_{2}$ adjustments is true
- $\mathrm{X}^{2}=-2 \ln \left(L_{1} / L_{2}\right)$
- where L_{1} and L_{2} are maximum likelihood functions for models 1 \& 2
- 2 step process:
- 1. Select a "key function" as a starting point
- 2. A flexible form (a "series expansion" is used to adjust the key function (using 1-2 parameters) to improve fit of model to distance data.

Series Expansion

- Cosine
- Simple polynomial
- Hermite polynomial

Likelihood Ratio Test

Sequential Approach

- Fit a key function, then fit a low order adjustment term.
- If adjustment improves model fit significantly,
- then test next order adjustment, etc.
- Default approach in DISTANCE
- Buckland et al. recommend $\alpha=$. 15 to increase power.

Akaike's Information Criterion

Optimization approach

- AIC = -2 $\ln (\mathrm{L})+2 q$
- where In (L) is log-likelihood function evaluated at the max. likelihood estimates of model parameters ($q=n o$. of parameters)
- Model with lowest AIC is selected
- Useful tool for model selection
- Compares no. of detections in each distance interval to expected no. under fitted model.

POVCP

- Paired Observer Varible Circular

 Plot- Developed by Kissling and Garton (In Auk, July 2006)
- Combines distance estimation approach with double observer estimation of probability of detection for objects at center of plot.

POVCP

- Two observers stand at plot center and independently record every bird and distance as well as any bird
movements on a simple plot map.
- After 8 minute count observers compare maps. [Observers get feedback, i.e. must stay sharp and learn from each other.
- At end of day each obiserver enters their observations into a database which notes birds seen by both or not

POVCP

- Each observer's data first analyzed with DISTANCE to determine at what distance detection probability falls below 1.0 (approx. perfect detection distance).
- Each observer's detections and misses are analyzed and modelled with logistic regression to estimate each observer's prob. of detection at $y=0.0$, plot center $(g(0))$ w/ covariates(rain, veg type, etc.).

POVCP

- Correction factors are calculated from $\theta=1 / g(0)$ for each observer.

■ Each observers count at a point is converted to a density estimate from $\mathrm{D}=(\mathrm{D} \theta \mathrm{f}(0) \mathrm{n}) / 2 \pi$

- A single density estimate for each count is then calculated by averaging the 2 observers density estimates at that point incorporating each observer's effective area and their correction factor.

POVCP

- We applied this to surveys of beach strands left from timber harvest in SE Alaska in 2001 and
- 200 woaring estimates to surveys analyzed by 4 other standard methods, the estimates were remarkably more precise and showed that other standard methods are biased low because of birds missed close to the plot center.

POVCP

- Detection probabilities at plot center varied by observers and by bird species from . 61 to 1.0 for Hermit Thrush, .83 to . 99 for Winter Wren, . 8 to .95 for Pacific-slope Flycatcher. etc.
- Density estimates varied for Winter Wrens from 0.84 birds/ha by point counts (no distances used) to 1.70 by VCP to 1.83 by POVCP.

