

Assumptions:

- Population is closed (no births or deaths or movements out or in)
- 2. All animals have same probability of being caught in the first sample
- 3. Marking does not affect catchability of an animal
- 4. Second sample is a random sample

Probability of Capture

- "Probability of capture is equal and constant for each animal at each trapping occasion."
- Problems:
 - Day to day variation (weather) = time
 - Behavioral effects (trap happy/shy)
 - Individual differences (heterogeneity)

CAPTURE Program: Models

- \blacksquare *M*_o Constant capture probabilities
- M_t Variation by time =Schnabel
- *M*_b Behavioral response to trapping
- *M*_{bh} Behavior and heterogeneity
- $\blacksquare M_{\rm th}, M_{\rm tb}, M_{\rm tbh}$

Assumptions:

- 5. No loss of tags between samples
- 6. All tags are reported in the second sample

Multiple Mark-Recapture

- A great advantage of multiple mark-recapture studies is that we can evaluate some of the critical assumptions
- and apply more complicated models where the simple assumptions are not appropriate.

Capture Program

- Models developed to handle these problems based on maximum likelihood (ML) in 50's, 60's, 70's.
- Not applied until 1980's because of difficulty of calculations.
- Otis et al (1978: Wildlife Monograph No.62) developed program CAPTURE to do calculations.

CAPTURE Program

- Key requirement is to mark animals individually so that their full capture history can be recorded.
- Numbers vs. density
- Boundary problems

Trapping Web

- Standard approach is to lay out traps in a rectangular grid (See CAPTURE concentric rows of traps)
- Record location of initial capture of each animal.
- Density of captures in centermost circles estimates density using variable circular plot approach.

Jolly-Seber Model (Often called

- **Cormuter Scher**) time periods to estimate how many of the marked animals were present at an earlier time period.
- To do this we must give each animal an individual mark so that its entire capture history can be recorded.

Recapture Matrix

Т	ïme o	f Capt	ure				
Time of	1	2	3	4	5	6	
1 2		10	3 34	5 18	2	2	
3			54	33	13	8	
4 5					30	20 43	

Open Population

- Limitation of previous methods is assumption of closure (no births, deaths, immigration or emigration)
- emigration).
 Can we estimate for open populations?
- What problem does mortality cause?
- Marked population is unknown because some of these have died.

Capture Recapture

ΙΟΙΔΙΣ							
Time	Captured	Recaptures	Released				
i	n,	m,	R,				
1	54	Ó	54				
2	146	10	143				
3	169	37	164				
4	209	56	202				
5	220	53	214				
6	209	77	207				

JS Population Estimate

- *n*_i *M*_i
- *N*_i = ----
 - m_i
- If we don't actually know M_i we can use an estimate of M_i.

JS Marked Population

- Which of the rest are known to be alive?
- Some of the rest are caught after sample i
- Call these z_i
- $\mathbf{z}_{i} = Animals marked previous to$ sample i, not caught at i, but caught later.

JS Marked Population

- r_i / n_i should be comparable to
- $= z_{i} / (M_{i} m_{i})$
- Setting these equal to each other and solving for M
- $Z_{i} n_{i}$

$$M_{i} = ----+ m_{i}$$

JS Estimate of Births

- $N_{i+1} = Additions + Survivors from$
- $= B_i + N_i s_i$
- rearranging this for births
- $\blacksquare B_i = N_{i+1} N_i s_i$

JS Marked Population

- M_i actually unknown because of mortality of released animals
- What is largest known group at i that is a subset of M_{i} ?
- m is known so must estimate the
- \blacksquare *M*_i *m*_i are the rest

JS Marked Population

- n, is largest group of individuals known to be alive at sample i and it is comparable to $(M_i - m_i)$, the "rest"
- Denote by r, the number of n, observed after sample i.
- r: is some fraction of n:

Recapture Matrix

Upshot?

- For this real example we can estimate population size, at each sample except last, as well as
- birth rate and death rate between
 Variance of each estimate and its standard error can be calculated in MARK or JOLLY software
- broken and recaptures for decent estimates.

Combination of Open and Closed Models

= Pollock's Robust Design

- Ken Pollock (prof at North Carolina State Univ.) developed a clever, robust design in 1982
 Whiples methods assuming closed popn during closely spaced multiple recapture
 - Apple Darboch-Cormack-Jolly-Seber methods for <u>open popn</u> during wider intervals
- MARK by Gary White incorporates this combined approach, but now you really need lots of data!

Population at t=3,4

- $\blacksquare M_4 = (202*37/50)+56 = 205.5$
- $N_3 = n_3 M_3 / m_3 = 169 \times 155.5 / 37 = 710$
- $\square N_4 = 209*205.5/56 = 767$
- $S_3 = M_4/(M_3 + n_3 m_3)$
- = 205.5/(155+169-37)=0.72
- $B_4 = N_4 N_3 * S_3 = 767 710 * 0.72 = 256$

Closed vs. Open Estimators?

- Closed (CAPTURE) allows us to test more of the assumptions and estimate correctly even if some assumptions aren't met.
- Open (MARK) isn't biased by lack of closure but can't deal with all the problems that closed estimators handle.
- Could they be combined?