Mark-Recapture

Mark-Recapture

- Modern use dates from work by C. G. J. Petersen (Danish fisheries biologist, 1896) and F. C. Lincoln (U. S. Fish and Wildlife Service, 1930)

Useful in estimating:

- a. Size of population
- b. Rate of exploitation
-c. Survival rate
- d. Rate of recruitment

Lincoln-Petersen

 Estimate- Applicable to closed populations
- A sample is taken, marked and released back into the population = M
- A second sample is taken of n individuals of which m have marks

Lincoln-Petersen

 Estimate- Proportion in sample marked = m / n
- This proportion should be equal to the proportion of marked population (M) to total population (N)
- = M/N
- e.g. $M / N=m / n$

Lincoln-Petersen

 Estimate- Assuming second sample is an unbiased sample of population, then
- $N_{\text {est }}=M n / m$
- This basic model is the point of departure for multitude of more sophisticated (complicated) models.

Chapman's modification

$$
\begin{aligned}
& \text { - } \quad(M+1)(n+1) \\
& \text { - } N_{\text {est }}=---------------- \\
& \text { - } \quad(m+1) \\
& \text { - } \quad N^{2}(n-m) \\
& \text { - } \operatorname{Var}(N)=- \\
& \text { - } \quad(n+1)(m+2)
\end{aligned}
$$

Rate of Exploitation

- Where the second sample is taken in course of harvesting the population (much of fisheries, waterfowl, control efforts for pests)
- Rate of exploitation (u)
- $u_{\text {est }}=m / M$

Assumptions:

- 1. Population is closed (no births or deaths or movements out or in)
- 2. All animals have same probability of being caught in the first sample
- 3. Marking does not affect catchability of an animal
- 4. Second sample is a random sample
- 5. No loss of tags between samples
- 6. All tags are reported in the second sample

Assumptions:

Multiple

 Mark-Recaptures- Assuming a closed population Schnabel (1938) and Schumacher \& Eschmeyers (1943) developed
- $\quad E n_{\mathrm{i}} M_{\mathrm{i}}$
- $N_{k}=$

$$
\left(E m_{\mathrm{i}}\right)+1
$$

- $\quad\left(E m_{\mathrm{i}}\right)+1$
- Note: All sums from $i=2$ to k
\qquad

Probability of Capture

- "Probability of capture is equal and constant for each animal at each trapping occasion."
- Problems:
- Day to day variation (weather) = time
- Behavioral effects (trap happy/shy)
- Individual differences (heterogeneity)

Multiple Mark-Recapture

- A great advantage of multiple mark-recapture studies is that we can evaluate some of the critical assumptions
- and apply more complicated models where the simple assumptions are not appropriate.

Capture Program

- Models developed to handle these problems based on maximum likelihood (ML) in 50's, 60's, 70's.
- Not applied until 1980's because of difficulty of calculations.
- Otis et al (1978: Wildlife Monograph No.62) developed program CAPTURE to do calculations.

CAPTURE Program:

 Models- M_{0} Constant capture probabilities
- M_{t} Variation by time =Schnabel
- M_{b} Behavioral response to trapping
- M_{bh} Behavior and heterogeneity
- $M_{\mathrm{th}}, \quad M_{\mathrm{tb}}, \quad M_{\mathrm{tbh}}$

CAPTURE Program

- Key requirement is to mark animals individually so that their full capture history can be recorded.
- Numbers vs. density
- Boundary problems

Trapping Web

- Standard approach is to lay out traps in a rectangular grid (See CAPTURE concentric rows of traps)
- Record location of initial capture of each animal.
- Density of captures in centermost circles estimates density using variable circular plot approach.

Open Population

- Limitation of previous methods is assumption of closure (no births, deaths, immigration or emigration).
- Can we estimate for open populations?
- What problem does mortality cause?
- Marked population is unknown because some of these have died.

Open Population

- Jolly (1965) - English statistician and

■ Seber (1965) - New Zeland statistician

- independently developed solution for multiple mark-recapture study based on earlier work by:
- Darroch (1959) another English statistician
t_{1} and Corr ack (1964) t_{3} Scottisth tatisticiran.

Jolly-Seber Model (Often

 called "Corfitertsibulvesemer)many of the marked animals were present at an earlier time period.

- To do this we must give each animal an individual mark so that its entire capture history can be recorded.

Darroch, Cormack, Jolly \& Seber's Idea

Capture Recapture Totats

		FOtas	
Time	Captured	Recaptures	Released
i	n_{i}	m_{i}	R_{i}
1	54	0	54
2	146	10	143
3	169	37	164
4	209	56	202
5	220	53	214
6	209	77	207

Recapture Matrix

JS Population Estimate

JS Estimate of Births

$$
\begin{aligned}
& ■ M_{\mathrm{i}+1} \\
& ■ \mathrm{~s}_{\mathrm{i}}=-------- \\
& ■ \quad M_{\mathrm{i}}+n_{\mathrm{i}}-m_{\mathrm{i}}
\end{aligned}
$$

- $N_{\text {i+1 }}=$ Additions + Survivors from
N_{i}
- $\quad=B_{i}+N_{i} s_{i}$
- rearranging this for births
- $B_{\mathrm{i}}=N_{\mathrm{i}+1}-N_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$

JS Marked Population

- M_{i} actually unknown because of mortality of released animals
- What is largest known group at i that is a subset of M_{i} ?
- m_{i} is known so must estimate the rest
- $M_{\mathrm{i}}-m_{\mathrm{i}}$ are the rest

JS Marked Population

- Which of the rest are known to be alive?
- Some of the rest are caught after sample i
- Call these z_{i}
- $z_{\mathrm{i}}=$ Animals marked previous to sample i, not caught at i, but caught later.

JS Marked Population

- n_{i} is largest group of individuals known to be alive at sample i and it is comparable to $\left(M_{\mathrm{i}}-m_{\mathrm{i}}\right)$, the "rest"
- Denote by r_{i} the number of n_{i} observed after sample i.
- r_{i} is some fraction of n_{i}

JS Marked Population

- $r_{\mathrm{i}} / n_{\mathrm{i}}$ should be comparable to
- $z_{\mathrm{i}} /\left(M_{\mathrm{i}}-m_{\mathrm{i}}\right)$
- Setting these equal to each other and solving for M_{i}
- $\quad z_{i} n_{i}$
- $M_{\mathrm{i}}=--------\quad+m_{\mathrm{i}}$
\square
r_{i}

Recapture Matrix

Marked Population at $t=3$

- $r_{3}=33+13+8=54$
- $z_{3}=5+2+2+18+8+4=39$
- $n_{3}=169$
- $m_{3}=37$
- $\quad z_{3} n_{3} \quad 39 * 169$
- $M_{3}=$ \qquad $+m_{3}=$ 37=155.5

Upshot?

- For this real example we can estimate population size, at each sample except last, as well as
- birth rate and death rate between standard error can be calculated in MARK or JOLLY software
- \#ttatrepnderge numbers of marked animals and recaptures for decent estimates.

Population at $t=3,4$

$$
\begin{aligned}
& \text { ■ } M_{4}=(202 * 37 / 50)+56=205.5 \\
& N_{3}=n_{3} M_{3} / m_{3}=169 * 155.5 / 37=710 \\
& -N_{4}=209 * 205.5 / 56=767 \\
& S_{3}=M_{4} /\left(\mathrm{M}_{3}+n_{3}-\mathrm{m}_{3}\right) \\
& \quad=205.5 /(155+169-37)=0.72 \\
& \quad B_{4}=N_{4}-N_{3} * S_{3}=767-710 * 0.72=256
\end{aligned}
$$

Closed vs. Open Estimators?

- Closed (CAPTURE) allows us to test more of the assumptions and estimate correctly even if some assumptions aren't met.
- Open (MARK) isn't biased by lack of closure but can't deal with all the problems that closed estimators handle.
- Could they be combined?

Combination of Open and Closed Models

= Pollock's Robust Design

- Ken Pollock (prof at North Carolina State Univ.) developed a clever, robust design in 1982 Wapilips methods assuming closed popn during closely spaced multiple recapture
- \{applessozfbch-Cormack-Jolly-Seber methods for open popn during wider intervals
 this combined approach, but now you really need lots of data!

