Mortality

Introduction

- Crude mortality rate $=$ deaths/starting N

$$
=\left(N_{x}-N_{x+1}\right) N_{x}
$$

- Age-specific mortality rate
- Survival rate = 1-mortality rate
- $\quad=N_{x+1} / N_{x}$
- Simplest approach (model) assumes constant rates for different ages/years
- Introduction
- Constant survival models for fish and birds (Catch curves)
- Age-/Stage-specific models
- Band recovery analysis
- MARK

Catch Curves

- = "Kill Curves" in birds and mammals
- Based on these simplest assumptions about rates (i.e. constant for ages and years)

Catch Curves

- If 100 are born and 50\% survive, then there will be 50 one-year olds
- If 50\% survive, 25 two-year olds
- If 50\% survive, 12 three-year olds
- If 50% survive, 6 four-year olds

Catch Curves

- Number alive $=$ Number X

Survival

- $N_{1}=N_{0} S$
- $N_{2}=N_{0} S S$
- $N_{2}=N_{0} S^{2}$
- $N_{\mathrm{t}}=N_{\mathrm{o}} \mathrm{S}^{\mathrm{t}}$
$■ \log N_{\mathrm{t}}=\log N_{\mathrm{o}}+t \log S$

Catch Curves

- Since S (survival rate) is less than 0
- log S is always negative
- Let $Z=-\log S$
- Z = Instantaneous total mortality
-Then $\log N_{\mathrm{t}}=\log N_{\mathrm{o}}-Z t$

Catch Curves

Fishing and Natural Mortality

- Fishing: $c=c a t c h / N=1-e^{-F}$
- Natural: n=natural deaths/N
- $\quad=1-e^{-\mathrm{M}}$
- Combining them as finite rates is complicated: Total= $m+n+m * n$
- But easy as instantaneous rates:
- Total mortality $=1-e^{-(\mathrm{F}+\mathrm{M})}=1-e^{-\mathrm{Z}}$
- $\quad(Z=F+M)$

Catch Curves

Catch Curves

- 1. Mortality is constant with age
- 2. No change in mortality over time
- 3. Fishing and natural mortality are uniform
- 4. Recruitment is constant
- 5. Fish fully recruited to gear by age r

Survivorship Curves

- Examples:
- Mammals
- Humans
- Birds
- Fish
- Types of Survivorship (Pearl 1930, Deevey 1947)
- Stage-specific rates?

Band Recovery Analysis

- Suppose we had banded 1603 adult male mallards in August of 1980
- How could we predict how many we would receive bands from in 1980, 1981, 1982, etc?
- It will depend on the fraction of the birds shot in a year and turned in to us (Band recovery rate) and the survival of birds (Survival rate)

Band Recovery Analysis

- $N_{1}=$ Number banded in year 1
- $f_{1}=$ band recovery rate in year 1
- $S_{1}=$ survival rate in year1
- $R_{12}=$ recoveries in year 2 from birds banded in year 1
$-R_{11}=N_{1} f_{1}$
- $R_{12}=\left(N_{1} S_{1}\right) f_{2}$

Program MARK

- We can use the program MARK written by Gary White at CSU to estimate these survival and recovery rates from banding data as well as estimates for a variety of other survival, recovery and mark-resight models.
- To do this we use the PIM or Parameter Information Matrix

PIM - Parameter Information Matrix Survival
PIM - Parameter Information Matrix Recovery

Parameter (f)

Mark-recapture or -resight Data

- Select Data Type = of models.
- We can compare models using AIC or Akaike's Information Criterion.
- AIC measures the deviation of observed data from the model adjusted for the number of parameters in the model.
- $A I C=-2 \ln (L)+2 n p$
- The lower the AIC the better the model.
- For nested models we could also use Likelihood Ratio Tests.

Comparing Models

- With MARK we can estimate a large variety绪

Recaptures only

- For band recovery data we
- Select Data Type =

■ Brownie et al. Recoveries or

- Recoveries only

Program MARK

PIM - Parameter Information Matrix Apparent
Survival Parameter (Phi)

- time $=$	1	2	3	4	5	6
	1	2	3	4	5	6
		2	3	4	5	6
			3	4	5	6
				4	5	6
					5	6
						6

PIM - Parameter Information Matrix Recapture

CJS

- These PIMs describe the Jolly-Seber model,
- more formally this is called
- fully time-dependent Cormack-Jolly-Seber model.

Time-specific Lifetable - Age-specific Survival
(S.)

Catch Curve - Survival (S)

