

#### **Catch Curves**

- If 100 are born and 50% survive, then there will be 50 one-year olds
- If 50% survive, 25 two-year olds
- If 50% survive, 12 three-year olds
- If 50 % survive, 6 four-year olds

#### **Catch Curves**

- Since S (survival rate) is less than 0
- Iog S is always negative
- Let  $Z = -\log S$
- $\blacksquare Z = Instantaneous total mortality$
- Then  $\log N_t = \log N_0 Zt$



Size of Fish

Catch Curves

- Number alive = Number X Survival
- $\mathbf{N}_1 = N_0 \mathbf{S}$

Catch

- $\blacksquare N_2 = N_0 S S$
- $\blacksquare N_2 = N_0 S^2$
- $\blacksquare N_{\rm t} = N_{\rm o} S^{\rm t}$
- $Iog N_t = log N_0 + t log S$



#### Fishing and Natural Mortality

- Fishing: c=catch/N=1-e<sup>-F</sup>
- Natural: n=natural deaths/N
- = 1-e<sup>-M</sup>
- Combining them as finite rates is complicated: Total= m+n+m\*n
- But easy as instantaneous rates:
- Total mortality =  $1 e^{-(F+M)} = 1 e^{-Z}$
- (Z=F+M)

### Life Tables

- More realistic approach relaxes assumption of equal age-specific survival rates
- Ideal approach marks a "cohort" at birth/young age and counts how many still alive each year[=cohort life table]
- life table]
  Summarize easily by plotting survivorship (lx = no. alive at age x)



- Suppose we had banded 1603 adult male mallards in August of 1980
- How could we predict how many we would receive bands from in 1980, 1981, 1982, etc ?
   It will depend on the fraction of
- It will depend on the fraction of the birds shot in a year and turned in to us (<u>Band recovery rate</u>) and the survival of birds (<u>Survival rate</u>)





## **Catch Curves**

- I. Mortality is constant with age
- 2. No change in mortality over time
- 3. Fishing and natural mortality are uniform
- 4. Recruitment is constant
- 5. Fish fully recruited to gear by age r

### **Survivorship Curves**

- Examples:
- Mammals
- HumansBirds
- Fish
- Types of Survivorship (Pearl 1930, Deevey 1947)
- Stage-specific rates?

#### **Band Recovery Analysis**

- $\blacksquare$   $N_1$  = Number banded in year 1
- $f_1$  = band recovery rate in year 1
- $\bullet$  S<sub>1</sub> = survival rate in year1
- R<sub>12</sub> = recoveries in year 2 from birds banded in year 1
- $\blacksquare R_{11} = N_1 f_1$

$$\blacksquare R_{12} = (N_1 S_1) f_2$$

### **Program MARK**

- We can use the program MARK written by Gary White at CSU to estimate these survival and recovery rates from banding data as well as estimates for a variety of other survival, recovery and mark-resight models.
- To do this we use the PIM or Parameter Information Matrix

| PIM - Pa | Parameter Information Matrix Survival<br>Parameter (S) |   |                                         |   |                                         |                            |  |  |
|----------|--------------------------------------------------------|---|-----------------------------------------|---|-----------------------------------------|----------------------------|--|--|
| time =   | 1                                                      | 2 | 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4 | 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 6<br>6<br>6<br>6<br>6<br>6 |  |  |

# **Comparing Models**

- With MARK we can estimate a large variety of models.
- We can compare models using AIC or Akaike's Information Criterion.
- AIC measures the deviation of observed data from the model adjusted for the number of parameters in the model.
- $AIC = -2 \ln(L) + 2 n p$
- The <u>lower</u> the AIC the <u>better</u> the model.
- For nested models we could also use Likelihood Ratio Tests.





| Parameter (f) |   |   |   |    |    |    |   |  |  |
|---------------|---|---|---|----|----|----|---|--|--|
| time =        | 1 | 2 | 3 | 4  | 5  |    | 6 |  |  |
| [             | 7 | 8 | 9 | 10 | 11 | 12 |   |  |  |
|               |   | 8 | g | 10 | 11 | 12 |   |  |  |
|               |   |   | g | 10 | 11 | 12 |   |  |  |
|               |   |   |   |    | 11 | 12 |   |  |  |
|               |   |   |   |    |    | 12 |   |  |  |
| -             |   |   |   |    |    |    |   |  |  |
|               |   |   |   |    |    |    |   |  |  |
| -             |   |   | _ |    |    | _  |   |  |  |
| -             |   |   |   |    |    |    |   |  |  |
| L             |   |   |   |    |    |    |   |  |  |



| Parameter (p) |   |   |   |   |    |    |    |  |  |
|---------------|---|---|---|---|----|----|----|--|--|
| time =        | 1 | 2 | 3 |   | 4  | 5  | 6  |  |  |
|               |   | 7 | 8 | ç | 10 | 11 | 12 |  |  |
|               |   |   | 8 | g | 10 | 11 | 12 |  |  |
|               |   |   |   | g | 10 | 11 | 12 |  |  |
|               |   |   |   |   |    | 11 | 12 |  |  |
|               |   |   |   |   |    |    | 12 |  |  |
|               |   |   |   |   |    |    |    |  |  |
|               |   |   |   |   |    |    |    |  |  |
|               |   |   |   |   |    |    |    |  |  |
|               |   |   |   |   |    |    |    |  |  |
|               |   |   |   |   |    |    |    |  |  |



#### Cohort Lifetable - Age-specific Survival (S<sub>x</sub>)



