Population Models

- · So far we've focused on:
 - Estimation techniques
 - Characteristics of populations
- Introduction to population growth models
 - Unlimited resources, density indpendent growth
 - Limited resources, density dependent growth

Population Models

- · Forecast future conditions
 - Sustainable yield
 - Population viability analysis
 - Trajectory of population size for invasive species
- · Hindcast to explore potential mechanisms

Population Growth: a simple case

- Constant environment
- · Unlimited resources
- · All animals are the same

Population Growth: a simple case

- Change in numbers = ΔN
- ΔN = (Births Deaths) + (Immigrants-Emigrants)
- · Ignore immigrants and emigrants
 - Assume closed population or
 - assume I = E
 - or combine B + I and D + E
- ΔN = B D

Population Growth: a simple case

- $\Delta N = N_1 N_0$
- $N_1 N_0$ = Births Deaths
- $N_1 N_0 = R_B N_0 R_D N_0$

Population Growth: a simple case

- $\Delta N = N_1 N_0$
- $N_1 N_0$ = Births Deaths
- $N_1 N_0 = R_B N_0 R_D N_0$
- $N_1 = N_0 + R_B N_0 R_D N_0$
- $N_1 = N_0 (1 + R_B R_D)$

Population Growth: a simple case

- · Let's project:
- $N_2 = N_1 \lambda$

Population Growth: a simple case

- Let's project:
- $N_2 = N_1 \lambda$
- $N_2 = (N_0 \lambda) \lambda$
- $N_2 = N_0 \lambda^2$

Population Growth: a simple case

- · Let's project:
- $N_2 = N_1 \lambda$
- $N_2 = (N_0 \lambda) \lambda$
- $N_2 = N_0 \lambda^2$
- $N_3 = N_0 \lambda \lambda \lambda$
- $N_4 = N_0 \lambda \lambda \lambda \lambda$, etc...
- In general, $N_t = N_0 \lambda^t$

Population Growth: a simple case

This treatment of growth rate (λ) is very simple and intuitive: λ = 1.06 = 6% increase per year

Assumptions

- Birth rate is constant
- Death rate is constant
- It treats all members of the population as equal or it assumes a stable age distribution
 - Reasonable for some populations
 Non-overlapping generations (insects, annual plants)
- $\boldsymbol{\lambda}$ can also be estimated from age-specific birth and death rates

- Note: only describes the population size per time interval
 - What if species does not have seasonal reproduction?
 - What if we want compare species with different intervals of population change (the tortoise vs. the hare)
 - $-\lambda$ is mathematically cumbersome in some instances. Use calculus-based continuous-time analog

dN/dt = r N

- $N_t = N_0 \lambda^t$
- $\ln(N_t) = \ln(N_0) + (\ln \lambda) t$
- $\ln(N_t) = \ln(N_0) + rt$
- y = a + b x

What is the daily rate?

Finite and Instantaneous Rates

 λ = 1.13 / year

What is the daily rate?

Instantaneous rates can easily be subdivided, but finite rates can't:

 λ = 1.13 / 12 = 0.094 / month = 90.6% decrease / month

Finite and Instantaneous Rates

- Instantaneous rates can easily be subdivided, but finite rates can't:
 - $\lambda = 1.13 / year$
 - r = 0.12 / year
 - = 0.01 / month
 - = 0.000329 / day
 - $\lambda = e^r = 1.000329 / day = 0.03\% / day$

Finite and Instantaneous Rates

· Finite survival rate:

S = N_t / N₀ • Instantaneous mortality rate:

> $z = - \ln (S)$ S = e^{-z}

Finite and Instantaneous Rates

- · Finite survival rates are multiplicative
- Instantaneous mortality rates are additive: z_{week} = 7 z_{daily}

Unlimited Growth Assumptions

- b d is constant, implies constant environment and unlimited resources
- All members of the population are equal or population has a stable age distribution
 - Reasonable for some populations
 Non-overlapping generations (insects, annual plants)
- Nonetheless, simple exponential growth models provide good predictions in many cases, e.g., collared dove in England

Changing environment

- Population change is in the real world is dynamic, b and d change
- Observed change is caused by:
 - Real changes (Process error)
 - deterministic causes
 - stochastic process error
 - factors we don't know about
 true randomness, e.g. demogr
 - true randomness, e.g. demographic stochasticity
 - Sampling (observation) error
- · We can incorporate into models

Stochastic population growth

• Mills 2007 Figure 5.5

Stochastic population growth

t	lambda	Ν
0		100
1	1.2	120
2	1.2	144
3	1.2	173
4	1.2	207
5	1.2	249
6	1.2	299
7	1.2	358
8	1.2	430

1 1.2 120 1.2 2 1.2 144 1.4	120
2 1.2 144 1.4	120
2 1.2 144 1.4	168
3 12 173 1	168
4 12 207 11	185
5 12 249 13	240
6 1.2 299 1.1	264
7 1.2 358 1.3	344
8 1.2 430 1.2	412
verage 1.2 1.2	
td Dev 0.000 0.131	

Stochastic population growth lambd N 100 120 144 173 207 249 299 358 Lambda N 100 120 168 168 185 240 264 344 412 Lambda N 100 120 192 154 138 207 187 280 336 t 0 1 2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.4 1.1 1.3 1.1 1.3 1.2 1.2 1.6 0.8 0.9 1.5 0.9 1.5 1.2 3 4 5 6 7 8 1.2 430 1.2 0.131 1.2 0.312 1.2 average Std Dev 0.000

t	lambda	N	Lambda	N	Lambda	N
0		100	-	100	-	10
1	1.2	120	1.2	120	1.2	12
2	1.2	144	1.4	168	1.6	19
3	1.2	173	1	168	0.8	15
4	1.2	207	1.1	185	0.9	13
5	1.2	249	1.3	240	1.5	20
6	1.2	299	1.1	264	0.9	18
7	1.2	358	1.3	344	1.5	28
8	1.2	430	1.2	412	1.2	33
Arithmetic Mean	1.2		1.2		1.2	
Std Dev	0.000		0.131		0.312	
Geometric Mean	1.200		1.194		1.164	

Unlimited growth summaryUnrealistic (long-term) assumptions

- Finite and instantaneous forms each have advantages
- Stochasticity affects ability to accurately predict future conditions
- Provides accurate predictions in many cases
 - short time intervals
 - invading/colonizing populations
 - post-disturbance dynamics