Population Models

- So far we've focused on:
- Estimation techniques
- Characteristics of populations
- Introduction to population growth models
- Unlimited resources, density indpendent growth
- Limited resources, density dependent growth

American shad, Columbia River

Population Models

- Forecast future conditions
- Sustainable yield
- Population viability analysis
- Trajectory of population size for invasive species
- Hindcast to explore potential mechanisms

Population Growth: a simple case

- Constant environment
- Unlimited resources
- All animals are the same

Population Growth: a simple case

- Change in numbers $=\Delta \mathrm{N}$
- $\Delta \mathrm{N}=$ (Births - Deaths $)+$ (ImmigrantsEmigrants)
- Ignore immigrants and emigrants
- Assume closed population or
- assume I = E
- or combine $B+I$ and $D+E$
- $\Delta \mathrm{N}=\mathrm{B}-\mathrm{D}$

Population Growth: a simple case

- $\Delta \mathrm{N}=\mathrm{N}_{1}-\mathrm{N}_{0}$
- $\mathrm{N}_{1}-\mathrm{N}_{0}=$ Births - Deaths
- $\mathrm{N}_{1}-\mathrm{N}_{0}=\mathrm{R}_{\mathrm{B}} \mathrm{N}_{0}-\mathrm{R}_{\mathrm{D}} \mathrm{N}_{0}$

Population Growth: a simple case

- $\Delta \mathrm{N}=\mathrm{N}_{1}-\mathrm{N}_{0}$
- $\mathrm{N}_{1}-\mathrm{N}_{0}=$ Births - Deaths
- $N_{1}-N_{0}=R_{B} N_{0}-R_{D} N_{0}$
- $N_{1}=N_{0}+R_{B} N_{0}-R_{D} N_{0}$
- $N_{1}=N_{0}\left(1+R_{B}-R_{D}\right)$

Population Growth: a simple case

- $\Delta \mathrm{N}=\mathrm{N}_{1}-\mathrm{N}_{0}$
- $\mathrm{N}_{1}-\mathrm{N}_{0}=$ Births - Deaths
- $\mathrm{N}_{1}-\mathrm{N}_{0}=\mathrm{R}_{\mathrm{B}} \mathrm{N}_{0}-\mathrm{R}_{\mathrm{D}} \mathrm{N}_{0}$
- $N_{1}=N_{0}+R_{B} N_{0}-R_{D} N_{0}$
- $N_{1}=N_{0}\left(1+R_{B}-R_{D}\right)$
- $\lambda=\left(1+R_{B}-R_{D}\right)$
- $\mathrm{N}_{1}=\mathrm{N}_{0} \lambda$

Population Growth: a simple case

- Let's project:
- $\mathrm{N}_{2}=\mathrm{N}_{1} \lambda$

Population Growth: a simple case

- $\Delta \mathrm{N}=\mathrm{N}_{1}-\mathrm{N}_{0}$
- $\mathrm{N}_{1}-\mathrm{N}_{0}=$ Births - Deaths
- $N_{1}-N_{0}=R_{B} N_{0}-R_{D} N_{0}$
- $N_{1}=N_{0}+R_{B} N_{0}-R_{D} N_{0}$
- $N_{1}=N_{0}\left(1+R_{B}-R_{D}\right)$
- $\lambda=\left(1+R_{B}-R_{D}\right)$
- $\mathrm{N}_{1}=\mathrm{N}_{0} \lambda$
- Note: $\lambda=N_{1} / N_{0}$

Population Growth: a simple case

- Let's project:
- $\mathrm{N}_{2}=\mathrm{N}_{1} \lambda$
- $\mathrm{N}_{2}=\left(\mathrm{N}_{0} \lambda\right) \lambda$
- $\mathrm{N}_{2}=\mathrm{N}_{0} \lambda^{2}$

Population Growth: a simple case

- Let's project:
- $\mathrm{N}_{2}=\mathrm{N}_{1} \lambda$
- $\mathrm{N}_{2}=\left(\mathrm{N}_{0} \lambda\right) \lambda$
- $\mathrm{N}_{2}=\mathrm{N}_{0} \lambda^{2}$
- $\mathrm{N}_{3}=\mathrm{N}_{0} \lambda \lambda \lambda$
- $\mathrm{N}_{4}=\mathrm{N}_{0} \lambda \lambda \lambda \lambda$, etc \ldots
- In general, $\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \lambda^{\mathrm{t}}$

Population Growth: a simple case

- This treatment of growth rate (λ) is very simple and intuitive: $\lambda=1.06=6 \%$ increase per year
- $\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \lambda^{\mathrm{t}}$

N

- $N_{t}=N_{0} \lambda^{t}$
- $\ln \left(\mathrm{N}_{\mathrm{t}}\right)=\ln \left(\mathrm{N}_{0}\right)+(\ln \lambda) \mathrm{t}$
- $\ln \left(\mathrm{N}_{\mathrm{t}}\right)=\ln \left(\mathrm{N}_{0}\right)+r \mathrm{t}$
- $y=a+b x$

- $r=\ln (\lambda)$
- $\lambda=\mathrm{e}^{r}$

r	lambda	
-0.51083	0.6	
-0.22314	0.8	
-0.05129	0.95	
0	1	
0.04879	1.05	$\ln (\mathrm{~N})$
0.182322	1.2	
0.336472	1.4	
0.693147	2	
2.302585	10	

Finite and Instantaneous Rates

$$
\lambda=1.13 / \text { year }
$$

What is the daily rate?

- Instantaneous rates can easily be subdivided, but finite rates can't:
$\lambda=1.13 / 12=0.094 /$ month $=90.6 \%$ decrease / month
- $\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \lambda^{\mathrm{t}}$
- $\ln \left(\mathrm{N}_{\mathrm{t}}\right)=\ln \left(\mathrm{N}_{0}\right)+(\ln \lambda) \mathrm{t}$
- $\ln \left(\mathrm{N}_{\mathrm{t}}\right)=\ln \left(\mathrm{N}_{0}\right)+r \mathrm{t}$
- $y=a+b x$

Finite and Instantaneous Rates

$$
\lambda=1.13 / \text { year }
$$

What is the daily rate?

Finite and Instantaneous Rates

- Instantaneous rates can easily be subdivided, but finite rates can't:

$$
\begin{aligned}
\lambda & =1.13 / \text { year } \\
r & =0.12 / \text { year } \\
& =0.01 / \text { month } \\
& =0.000329 / \text { day } \\
\lambda & =\mathrm{e}^{r}=1.000329 / \text { day }=0.03 \% / \text { day }
\end{aligned}
$$

Finite and Instantaneous Rates

- Finite survival rate:

$$
S=N_{t} / N_{0}
$$

- Instantaneous mortality rate:

$$
\begin{aligned}
& z=-\ln (S) \\
& S=e^{-z}
\end{aligned}
$$

Finite and Instantaneous Rates

- Finite survival rates are multiplicative
- Instantaneous mortality rates are additive:

$$
z_{\text {week }}=7 z_{\text {daily }}
$$

Unlimited Growth Assumptions

- b-d is constant, implies constant environment and unlimited resources
- All members of the population are equal or population has a stable age distribution
- Reasonable for some populations
- Non-overlapping generations (insects, annual plants)
- Nonetheless, simple exponential growth models provide good predictions in many cases, e.g., collared dove in England

Changing environment

- Population change is in the real world is dynamic, b and d change
- Observed change is caused by:
- Real changes (Process error)
- deterministic causes
- stochastic process error
- factors we don't know about
- true randomness, e.g. demographic stochasticity
- Sampling (observation) error
- We can incorporate into models

Stochastic population growth

- Mills 2007 Figure 5.5

Stochastic population growth

\mathbf{t}	lambda	\mathbf{N}
0		100
1	1.2	120
2	1.2	144
3	1.2	173
4	1.2	207
5	1.2	249
6	1.2	299
7	1.2	358
8	1.2	430

Stochastic population growth

\mathbf{t}	lambda	\mathbf{N}	Lambda	\mathbf{N}
0		100	-	100
1	1.2	120	1.2	120
2	1.2	144	1.4	168
3	1.2	173	1	168
4	1.2	207	1.1	185
5	1.2	249	1.3	240
6	1.2	299	1.1	264
7	1.2	358	1.3	344
8	1.2	430	1.2	412
			1.2	
average	1.2		1.2	
Sd Dev	0.000		0.131	

Stochastic population growth

\mathbf{t}	lambda	\mathbf{N}	Lambda	\mathbf{N}	Lambda	\mathbf{N}
0		100	-.100	100	-.2	100
1	1.2	120	1.2	120	1.2	120
2	1.2	144	1.4	168	1.6	192
3	1.2	173	1	168	0.8	154
4	1.2	207	1.1	185	0.9	138
5	1.2	249	1.3	240	1.5	207
6	1.2	299	1.1	264	0.9	187
7	1.2	358	1.3	344	1.5	280
8	1.2	430	1.2	412	1.2	336
	1.2		1.2		1.2	
average	1.2		0.131		0.312	
Sda Dev	0.000					

Stochastic population growth

\mathbf{t}	lambda	\mathbf{N}	Lambda	\mathbf{N}	Lambda	\mathbf{N}
0		100	-	100	-	100
1	1.2	120	1.2	120	1.2	120
2	1.2	144	1.4	168	1.6	192
3	1.2	173	1	168	0.8	154
4	1.2	207	1.1	185	0.9	138
5	1.2	249	1.3	240	1.5	207
6	1.2	299	1.1	264	0.9	187
7	1.2	358	1.3	344	1.5	280
8	1.2	430	1.2	412	1.2	336
			1.2		1.2	
Arithmetic Mean	1.2		0.131		0.312	
Sdd Dev	0.000				1.194	
Geometric Mean	1.200					

$$
\bar{\lambda}_{G}=\left(\lambda_{1}{ }^{*} \lambda_{2}{ }^{*} \lambda_{3}{ }^{*} \ldots{ }^{*} \lambda_{t}\right)^{1 / t}
$$

Unlimited growth summary

- Unrealistic (long-term) assumptions
- Finite and instantaneous forms each have advantages
- Stochasticity affects ability to accurately predict future conditions
- Provides accurate predictions in many cases
- short time intervals
- invading/colonizing populations
- post-disturbance dynamics

