Problem Set 7

The picture below lies in $\mathbb{A}_{\mathbb{R}}^{2}$. Each of the 3 darker line segments in the picture represents a steel bar of length 1 . The other two line segments have length 2 . Let $A=(0,0), B=(0,2), C=\left(x_{1}, y_{1}\right)$ and $D=\left(x_{2}, y_{2}\right)$. Points A and B cannot move but points C and D can move. The steel bars are connected with hinges. Similar to the last problem set, as the three bars move into every allowable position, the point M sweeps out a curve. This curve is an irreducible affine variety given as $V(F)$ for some polynomial $F \in \mathbb{R}[X, Y]$. In the problems following the picture, you will compute F (almost) using Macaulay 2 and elimination theory.

Problem 1. Try to give a rough sketch of the curve traced out by M.
Now we will construct an ideal, I, in $\mathbb{R}\left[X, Y, x_{1}, x_{2}, y_{1}, y_{2}\right]$ which represents all allowable configurations and the corresponding positions of M. Each bar yields a constraint on the variables $x_{1}, x_{2}, y_{1}, y_{2}$, this yields 3 quadratic polynomials. Let $M=(X, Y)$ and write down the coordinates of M in terms of $x_{1}, x_{2}, y_{1}, y_{2}$, this yields 2 more quadratic polynomials. Let I be the ideal generated by the five quadratic.

Problem 2. Write out the equations for I.
We would like to know all of the allowable values of X and Y. This corresponds to computing $J=I \cap \mathbb{R}[X, Y]$. If you carry out this computation in Macaulay 2 you will obtain an ideal with a single generator, F. F is not quite the equation of the curve, $F=G H$ with G, H irreducible. One of the factors is the equation of the curve.

Problem 3. What is the other factor of F ? Can you find the equation of F ?

