Problem Set 21

Problem 1. Let L_1, L_2, L_3, L_4 be 4 lines in \mathbb{P}^3 . Let $C(L_i)$ denote the Chow form of L_i . Determine the number of lines which intersect all 4 lines by computing the degree of the variety in \mathbb{P}^5 determined by $\mathbb{G}(1,3) \cap C(L_1) \cap \cdots \cap C(L_4)$.

Problem 2. In general, you can determine the number of lines which intersect 4 curves, D_1, \ldots, D_4 in \mathbb{P}^3 by computing the Chow form of each curve and intersecting all of the Chow forms with $\mathbb{G}(1,3)$. Since $\mathbb{G}(1,3)$ has degree 2, the expected number of lines will be $2\prod_{i=1}^4 deg(C(D_i))$. How many lines intersect 4 random twisted cubics in \mathbb{P}^3 ?

Problem 3. Pick a cubic surfaces in \mathbb{P}^3 . Use the algorithm given in class to determine the number of lines which lie on the surface. (If the surface is general enough then the answer should be 27).

Problem 4. Let D be the curve given as the image of the map $\phi : \mathbb{P}^1 \to \mathbb{P}^4$ where $\phi([s:t]) = [s5:s^4t:s^2t^2:st^4:t^5]$. Determine the osculating plane to D at [1:2:4:16:32].