Problem 1 (2.5 points)
Let S_3 be the symmetric group of degree 3, i.e., the group of permutations on \{1, 2, 3\}.

(i) Find the order of each element of S_3.

(ii) List all cyclic subgroups of S_3.

Problem 2 (2.5 points)
Use trigonometric identities and induction to prove that
\[
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)^n = \left(\begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right)
\]
for all $n \in \mathbb{N}$. Show that for a constant θ
\[
H = \left\{ \left(\begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right) \mid n \in \mathbb{Z} \right\}
\]
is a cyclic subgroup of $GL(n, \mathbb{R})$. Do you think H is finite?

Problem 3 (2.5 points)
Let a be an element of a group G and let $|a| = 15$. Compute the orders of the following elements of G:

(i) a^3, a^6, a^9 and a^{12}.

(ii) a^5 and a^{10}.

(iii) a^2, a^4, a^8 and a^{14}.

Problem 4 (2.5 points)
Let G be a group with respect to addition and let $a \in G$. Prove that $|a| = |-a|$.