Recall the problem

\[\frac{dP}{dt} = kP \]

with solution \(P(t) = Ce^{kt} \), \(C \) is an arbitrary constant.

Condition \(P(0) = 1000 \) is called an initial condition (IC).

IC determines the unique solution out of infinitely many solutions defined by an arbitrary constant \(C \).

IC specifies \(C \)

Def The order of a DE is the order of the highest derivative in DE.

\[y' = e^t : \text{1st order DE} \]

\[\frac{d^2x}{dt^2} + g x = 0 : \text{2nd order DE} \]
$y'' + 3y^3 = 2x$: 2nd order DE

$\frac{d^2y}{dx^2} = y \cdot y \cdot y$

$y^{(4)} + y^2 x + y = 5n x$: n^{th} order DE

$y^{IV} = \frac{d^4y}{dx^4}$

In general, n^{th} order DE for $y = y(x)$ can be written as

$$F(x, y, y', y'', \ldots, y^{(n)}) = 0$$

A continuous function $u = u(x)$ is a solution of DE (1) on some interval $x \in I$ if

$$F(x, u, u', \ldots, u^{(n)}) \equiv 0 \quad \text{for all } x \in I$$
If we have a DE for function \(u(x) \) of one variable \(x \), then we have an ordinary differential equation (ODE).

Consider \(u = u(t,x) \): temperature of a long thin rod uniform

Then

\[
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad k > 0: \text{thermal diffusivity}
\]

Eq. (2) is a partial differential equation (PDE). Many PDEs.

This is an ODE class.
We will start from 1st order DEs.

\[\frac{dy}{dx} = f(x, y) \quad y = y(x) \]

\[y(x_0) = y_0 : \quad \text{IC} \]

DE + IC form an initial value problem (IVP).

To solve IVP, we need to find a function \(y = y(x) \) that satisfies both DE and IC.

1.2 Integrals as General and Particular Solutions

Consider

\[\frac{dy}{dx} = f(x) \]

1st order DE
We want to find solution $y(t)$.

\[n y(x) = \int \frac{dy}{dx} \, dx = \int f(t) \, dt + C \]

A general solution of DE $\frac{dy}{dx} = f(t)$

\[y(x) = \int f(x) \, dx + C \]

A general solution of a 1st order DE involves an arbitrary constant. It defines a one-parameter family of solutions.

Let $G(x)$ be an antiderivative of $f(t)$, i.e. $G'(x) = f(x)$.

\[\Rightarrow y(x) = G(x) + C \]

If we have IC $y(x_0) = y_0$.

\[\Rightarrow \text{at } x = x_0 : \quad y(x_0) = G(x_0) + C \quad \Rightarrow \]

\[\Rightarrow \text{evaluate} \quad C = y_0 - G(x_0) \]
The particular solution of DE $y' = f(x)$ subject to IC $y(x_0) = y_0$.

Note: The general solution describes all possible solutions of a DE.

Ex: Solve IVP

\[
\frac{dy}{dx} = 4x - 5, \quad y(1) = 2
\]

\[
y(x) = \int (4x - 5) \, dx = 2x^2 - 5x + C
\]

At $x = 1$, $y(1) = 2$

\[
y(1) = 2 \cdot 1^2 - 5 \cdot 1 + C \implies 2 = 2 - 5 + C \implies C = 5
\]

\[
\therefore y(x) = 2x^2 - 5x + 5
\]

the general solution

\[
\therefore y(x) = 2x^2 - 5x + 5
\]

the particular solution
Consider 2nd order DE

Integrate twice wrt x.

\[\frac{dy}{dx} = \frac{d^2y}{dx^2} = g(x) \]

No y dependence

\[\frac{dy}{dx} = \int g(x) \, dx + C_1 \]

\[y(x) = \int \left(\int g(x) \, dx + C_1 \right) \, dx + C_2 \]

\[y(x) = \int H(x) \, dx + C_1 x + C_2 \]

A general solution of

\[y'' = g(x) \]

2nd order DE

\[g(x) = \frac{d^2y}{dx^2} \]
Velocity and Acceleration

\(x(t) \): particle position

\(m \): mass of particle

\(F(t) \): force acting on the particle along its line of motion

\[\frac{dx}{dt} = v(t) \]: velocity

\[\frac{d^2x}{dt^2} = \frac{dv}{dt} = a(t) \]: acceleration

\[x(t) = \int v(t) \, dt + x(t_0) \]

\(\text{Integral with upper variable limit} \)

\[\frac{dx}{dt} \bigg|_{t=t_0} = v(t) \]

Newton's 2nd law of motion: \(ma = F \)

\[m \frac{d^2x}{dt^2} = F \]: 2nd order DE for \(x(t) \)
\(x(0) = x_0 \): initial position \(\quad \int \quad \text{ICs} \)

\(\frac{dx}{dt}(0) = v_0 \): initial velocity

Assume for simplicity that \(F = \text{const} \Rightarrow a = \text{const} \) \(F = ma \)

\[\frac{d^2x}{dt^2} = \frac{F}{m} \quad \text{or} \quad \frac{d^2x}{dt^2} = a \]

Integrate:

\[\frac{dx}{dt} = \int \frac{d^2x}{dt^2} \, dt = \int a \, dt = at + C_1 \]

IC: \(x(0) = x_0 \) \(\Rightarrow \) at \(t = 0 \):

\[\frac{dx}{dt}(0) = a \sqrt{0} + C_1 \Rightarrow C_1 = v_0 \]

\[\frac{dx}{dt} = at + v_0 \quad \text{or} \quad v(t) = at + v_0 \]
Integrate again

\[x(t) = \int (at + v_0) \, dt = \frac{at^2}{2} + v_0 t + C_2 \]

IC: \(x(0) = x_0 \implies x(0) = \frac{a \cdot 0^2}{2} + v_0 \cdot 0 + C_2 \implies C_2 = x_0 \)

\[\therefore \quad x(t) = \frac{a}{2} t^2 + v_0 t + x_0 \]