Lecture 42

Linear shooting method (Cont'd)

Recast as a system of 1st order IVPs:

Let \(u_1 = v, \ u_2 = v', \ u_3 = w, \ u_4 = w' \)

\[
\begin{align*}
\frac{d}{dx} u_1 &= u_2 \\
\frac{d}{dx} u_2 &= p(x) u_2 + q(x) u_1 + r(x) \\
\frac{d}{dx} u_3 &= u_4 \\
\frac{d}{dx} u_4 &= p(x) u_4 + q(x) u_3
\end{align*}
\]

\(a \leq x \leq b \)

\(u_1(a) = \alpha, \ u_2(a) = 0, \ u_3(a) = 0, \ u_4(a) = 1 \)

\[
\Rightarrow u(x) = u_1(x) + \frac{p - u_1(b)}{u_3(b)} u_3(x)
\]

Note: We can solve the above IVP using, for example, \(O(h^4) \) Runge-Kutta method for systems.
Summary

We could use 2 methods to solve linear heat equation:

- Linear shooting method: turn BVP into 2 IVs for $v(x)$ and $w(x) \Rightarrow u(x) = v(x) + C w(x)$

- Linear finite difference: replace derivatives by finite differences, BVP \Rightarrow linear algebraic system (sparse system - lots of zeros). Can solve by Gaussian elimination or iterative methods.

Nonlinear shooting method

Application: heat flow in a thin rod

$x = a$, $x = b$

x: position along rod
$u(x)$: steady-state temperature
\[f(x, u, u') : \text{external heat source} \]

The steady-state heat eq:

\[u''(x) = -f(x, u, u') \]

\[u(a) = \alpha \]

\[u(b) = \beta \]

Thm

\[D = \mathbb{L} (x, u, u') : \quad a \leq x \leq b, \quad -\infty < u < \infty, \quad -\infty < u' < \infty \]

Thm

\[D = \mathbb{L} (x, u, u') : \quad a \leq x \leq b, \quad -\infty < u < \infty, \quad -\infty < u' < \infty \]

1. \(f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial u'} \) are continuous on \(D \)

2. \(\frac{\partial f}{\partial u} < 0 \) on \(D \)

3. \(|\frac{\partial f}{\partial u'}| \leq M \) on \(D \)

Then the above BVP has a unique solution.
Idea: convert BVP to IVP.

IVP: \[u''(x) = -f(x, u, u') \]
\[u(a) = \alpha \]
\[u'(a) = s \]
\[s \text{ is unknown} \]

Goal: Find \(s \) such that \(u(b) = \beta \). This is called a shooting method because we are aiming at \(u \) by choosing \(s \) so that we hit a target \((u = \beta \text{ at } x = b) \).

Choosing \(s \)

The solution depends on \(x \) and \(s \): \(u = u(x, s) \)

We want \(u(b, s) = \beta \Rightarrow u(b, s) - \beta = 0 \)

This is a root-finding problem.
Newton's method:

1. Start with initial guess s_0

2. $s_{k+1} = s_k - \left[\frac{u(b, s_k) - \beta}{\frac{\partial u}{\partial s}(b, s_k)} \right]$ for $k = 0, 1, 2, ...$

$u(b, s_k)$: solve IVP with $u'(a) = s_k$ and evaluate solution at $x = b$

Question: how do we compute $\frac{\partial u}{\partial s}(b, s_k)$?

Computing $\frac{\partial u}{\partial s}$

IVP: $u''(x) = -f(x, u(x), u'(x))$

$u(a, s) = \alpha$

$u'(a, s) = s$
Take partial derivative \(w \) \(\frac{\partial u}{\partial s} \):

\[
\frac{\partial u''}{\partial s} = - \frac{\partial f}{\partial u} = - \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial s} = - \frac{\partial f}{\partial u} \cdot \frac{\partial u'}{\partial s} \quad (*)
\]

\(u(a, s) = x \Rightarrow \frac{\partial u}{\partial s} (a, s) = 0 \)

\(u'(a, s) = s \Rightarrow \frac{\partial u'}{\partial s} (a, s) = 1 \)

Let \(\frac{\partial}{\partial s} (x, s) = \frac{\partial u}{\partial s} (x, s) \)

\(\frac{\partial}{\partial x} \frac{\partial u}{\partial s} = \frac{\partial}{\partial s} \frac{\partial u}{\partial x} = \frac{\partial u'}{\partial s} \quad (***) \)

\(\frac{\partial}{\partial x} \frac{\partial u'}{\partial s} = \frac{\partial}{\partial s} \frac{\partial^2 u}{\partial x^2} = \frac{\partial u''}{\partial s} \)

\(z(x, s) \text{ must satisfy} \)

IVP: \(\frac{\partial^2}{\partial u} (x, u, u') \cdot z(x, s) - \frac{\partial f}{\partial u} (x, u, u') z'(x, s) \)

\(z(a, s) = 0, \quad z'(a, s) = 1 \)
Converting to a first order system:

Let \(u_1 = u \), \(u_2 = u' \), \(u_3 = z \), \(u_4 = z' \)

\[
\begin{align*}
 u_1' &= u_2 \\
 u_2' &= -f(x, u_1, u_2) \\
 u_3' &= u_4 \\
 u_4' &= -\frac{\partial f}{\partial u}(x, u_1, u_2) \cdot u_3 - \frac{\partial f}{\partial u'}(x, u_1, u_2) \cdot u_4 \\
 u_1(a) &= \alpha, \quad u_2(a) = S_k, \quad u_3(a) = 0, \quad u_4(a) = 1
\end{align*}
\] (1)

General procedure

1. Choose \(s_0 \), set \(k = 0 \).
2. Solve IVP (1) with \(u_2(a) = S_k \).
3. Compute \(S_{k+1} = S_k - \left[\frac{u_1(b, S_k) - \beta}{u_3(b, S_k)} \right] \)

\[k = k + 1 \]
4. Repeat step 2 and 3 until

\[|S_k - S_{k-1}| < tol \]

Notes

1. How quickly we converge depends on initial guess so.

2. Newton's method will converge quadratically because \(z(b_1, S) = 0 \) \(b_1, S \) \(\neq 0 \). Can show using uniqueness argument.

3. At each iteration, must use a numerical method such as \(O(h^4) \) Runge-Kutta to solve the system of four 1st order DEs (IVP).