Fixed Point Iterations

\[x = g(x) \]
\[x_{n+1} = g(x_n) \]

\[x_1 = g(x_0) \]
\[x_2 = g(x_1) \]

Sequence of \(x \) converges to root \(d \).

\[f(x) = x^2 - 3 \]
\[g(x) = x - \frac{x^2 - 3}{2} \]

Ex:
\[g(x) = x - \frac{x^2 - 3}{2} \]
\[q_2(x) = \frac{3}{x} \]

\begin{tabular}{|c|c|}
\hline
\(n \) & \(X_n \) \\
\hline
0 & 1.5 \\
1 & 1.875 \\
2 & 1.617 \\
3 & 1.810 \\
4 & 1.672 \\
5 & 1.774 \\
\hline
\end{tabular}

converges

\[x^2 - 3 = 0 \quad \Rightarrow \quad x^2 = 3 \quad \left(\frac{1}{x} \right) \]

\[x = \frac{3}{X} \]

\[g_2(x) \]

\begin{tabular}{|c|c|}
\hline
\(n \) & \(X_n \) \\
\hline
0 & 1.5 = \frac{3}{2} \\
1 & 2 \\
2 & 1.5 \\
3 & 2 \\
4 & 1.5 \\
\hline
\end{tabular}

diverges
What condition on \(g(x) \) guarantees that \(x_n \to a \)?

Thm (Existence and uniqueness of a fixed point)

A1. \(g(x) \) maps \([a, b]\) into \([a, b]\), i.e. if \(x \in [a, b] \)

 then \(g(x) \in [a, b] \)

A2. \(g(x) \) is continuous on \([a, b]\)

A3. \(|g'(x)| \leq k < 1 \) for all \(x \in [a, b] \)

Note: \(A3 \Rightarrow A2 \)

1) \(A1 \) and \(A2 \) are satisfied \(\Rightarrow g(x) \) has a
 fixed point \(a \in [a, b] \)

2) \(A1 \) and \(A3 \) are satisfied \(\Rightarrow \) fixed point \(a \) is unique.
A_1, A_3 (and A_2) are satisfied
$\Rightarrow g(x)$ has a unique fixed pt

A_3 fails \Rightarrow 3 fixed points
A_1 & A_2 hold

A_1 fails \Rightarrow there may or may not be a fixed pt

A_2 fails, A_3 fails as well
\Rightarrow there is no fixed pt
A_1 holds
Proof of (1)

If \(g(a) = a \) or \(g(b) = b \), then we are done.

Otherwise, we suppose that \(a < g(x) < b \) for all \(x \in (a, b) \).

Let \(a < g(a) \) and \(g(b) < b \).

Introduce \(h(x) = x - g(x) \). \(h(x) \) is continuous since \(g(x) \) is continuous.

\[h(a) = a - g(a) < 0, \quad h(b) = b - g(b) > 0 \]

By Intermediate Value Thm, there is \(\alpha \in (a, b) \) such that \(h(\alpha) = 0 \) \(\Rightarrow h(\alpha) = \alpha - g(\alpha) = 0 \)

\(\Rightarrow \alpha = g(\alpha) \)

\(\therefore \alpha \) is a fixed point of \(g \) in \((a, b) \).
Recall Mean Value Theorem

Let $f(x)$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists a value $\xi \in (a, b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a} = \frac{f(\xi) - f(a)}{\xi - a}$$

$$f(b) - f(a) = f'(\xi)(b - a)$$

This tangent line of $f(x)$ at ξ has the same slope as the secant line connecting $(a, f(a))$ and $(b, f(b))$.

Proof of (2)

Suppose that x_1 and x_2 are two fixed points of $g(x)$ in $[a, b]$.
Then
\[|d_1 - d_2| = \frac{|g(x_1) - g(x_2)|}{g(x_1) - g(x_2)} = \frac{|g'(x)| \cdot |d_1 - d_2|}{\text{Thm}} \]

\[= |g'(x)| \cdot |d_1 - d_2| \leq K \cdot |d_1 - d_2| \]

\[\Rightarrow |d_1 - d_2| \leq K |d_1 - d_2| \]

\[\frac{(1-K)}{0} |d_1 - d_2| \leq 0 \Rightarrow |d_1 - d_2| = 0 \Rightarrow d_1 = d_2 \]

\[0 \leq K < 1 \Rightarrow 1-K \neq 0 \quad \therefore \text{fixed pt is unique} \]

Thm: (Convergence of fixed-point iterations)

A1 and **A3** hold \[\Rightarrow \] the sequence defined by \[x_{n+1} = g(x_n) \]
converges for any \[x_0 \in [a, b] \].
Proof
\[|x - x_{n+1}| = |g(x) - g(x_n)| = M |v^T \cdot g'(x)| \cdot |x - x_n| \leq K \cdot |x - x_n| \]

\[\Rightarrow |x - x_{n+1}| \leq K \cdot |x - x_n| \]

\[\text{error at iter. } n+1 \]
\[\text{error at previous iter. } n \]

\[\cdots |x - x_{n+1}| \leq K \cdot |x - x_n| \leq K^2 |x - x_{n-1}| \leq K^3 |x - x_{n-2}| \leq \cdots \]

\[\cdots \leq K^{n+1} |x - x_0| \]

As \(n \to \infty \), \(K^{n+1} \to 0 \) since \(K < 1 \)

\[\Rightarrow |x - x_{n+1}| \leq K^{n+1} |x - x_0| \to 0 \text{ as } n \to \infty \]

\[\downarrow \text{fixed} \]

\[\Rightarrow x_{n+1} \to x \text{ as } n \to \infty \]
Def: The order of convergence of a sequence

A sequence \(\{x_n\} \) is said to converge to \(x \) with order \(r \) if there exists a constant \(C \) such that

\[
|x - x_{n+1}| \leq C |x - x_n|^r
\]

\(r \): order of convergence

Note: This is equivalent to

\[
|x - x_n| \leq C |x - x_{n-1}|^r
\]

\[\text{or } \frac{|x - x_n|}{|x - x_{n-1}|^r} \leq C\]