Piecewise polynomial interpolation

Given function \(f \), \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \)

The interpolating polynomial of degree \(n \), \(p_n \), may not give a good approximation over the entire interval \([a, b] \).

Define \(g_i \) : piecewise linear interpolant by

\[
g_i(x) = f[x_i:J] + \frac{f[x_i, x_{i+1}]}{(x-x_i)} (x-x_i), \quad x \in [x_i, x_{i+1}]
\]

\[
g_i(x_i) = f[x_i:J] = f(x_i)
\]

\[
g_i(x_{i+1}) = f[x_i:J] + \frac{f[x_{i+1}]-f[x_i]}{x_{i+1}-x_i} (x_{i+1}-x_i) = f(x_{i+1})
\]

\(g_i \) is continuous on \([a, b] \) but not differentiable on \([a, b] \) (\(g_i \) is not differentiable at \(x_i \), \(i = 1, 2, \ldots, n-1 \))
\[M_i = \max |f''(x)|, \quad x \in [x_i, x_{i+1}] \]

For any \(x \in [a, b] \),
\[|f(x) - \phi_i(x)| \leq \max_i \frac{M_i}{8} |x_{i+1} - x_i|^2 \]

\[\|f - P_i\|_\infty \leq \frac{M}{8} (b-a)^2, \text{ where } M = \max (f'') \]

Splines

Let \(a = x_0 < x_1 < x_2 < \ldots < x_{n+1} = b \).

A spline of degree \(m \) is a function \(S(x) \)
that satisfies the following conditions:

1. For \(x \in [x_i, x_{i+1}] \), \(S(x) = S_i(x) \) a polynomial of degree \(\leq m \)

\[S_i \quad S_i(x) \]
\[x_0 \quad x_1 \quad x_i \quad x_{i+1} \quad \ldots \]

\[\lim_{x \to x_i^-} S_i(x) = \lim_{x \to x_i^+} S_{i+1}(x) \]

\[\lim_{x \to x_i^-} S^{(m-1)}(x) = \lim_{x \to x_i^+} S^{(m-1)}(x) \]

\[a \text{'s'.]
\[\text{Ex} \quad x_0 = -1, \quad x_1 = 0, \quad x_2 = 1 \]

\[S(x) = \begin{cases} 0, & -1 \leq x \leq 0 \\ x^2, & 0 \leq x \leq 1 \end{cases} \]

Yes, \(S(x) \) is a spline of degree \(2 = m \) (quadratic spline).

\[\text{Ex} \quad S(x) = \begin{cases} 0, & 0 \leq x \leq 1 \\ 1 - (x-1)^2, & 0 \leq x \leq 1 \end{cases} \]

\[\lim_{x \to 0^+} S'(x) = 2 \neq \lim_{x \to 0^-} S'(x) = 0 \]

No, \(S(x) \) is \textit{not} a spline since \(\lim_{x \to 0^-} S'(x) ≠ \lim_{x \to 0^+} S'(x) \)

\underline{Cubic spline interpolation}

Given \(f \), \(x_0, x_1, \ldots, x_n \) as above, find a cubic spline \(S(x) \) that interpolates function \(f(x) \):

\[f(x_i) = S(x_i), \quad i = 0, 1, \ldots, n \]

\(n+1 \) points \(\Rightarrow n \) intervals \(\Rightarrow 4n \) coefficients
$2n = 2(n-1) + 2$ conditions to interpolate f

$2(n-1)$ conditions to require that $S(x)$ and $S''(x)$ are continuous at interior points x_1, \ldots, x_{n-1}

\Rightarrow we have $4n - 2$ conditions and $4n$ unknowns

\Rightarrow we need two extra conditions

A popular choice is

$S''(x_0) = S''(x_n) = 0$: natural cubic spline

Another choice:

$S'(x_0) = f'(x_0), \quad S'(x_n) = f'(x_n)$: clamped cubic spline