Math/Phys/Engr 428, Math 529/Phys 528
Numerical Methods - Spring 2020

Homework 3
Due: March 6, 2020

1. (Vector and Matrix Norms)
 Show that the \(l_1 \) vector norm satisfies the three properties

 (a) \(\|x\|_1 \geq 0 \) for \(x \in \mathbb{R}^n \) and \(\|x\|_1 = 0 \) if and only if \(x = 0 \)

 (b) \(\|\lambda x\|_1 = |\lambda| \|x\|_1 \) for \(\lambda \in \mathbb{R} \) and \(x \in \mathbb{R}^n \)

 (c) \(\|x + y\|_1 \leq \|x\|_1 + \|y\|_1 \) for \(x, y \in \mathbb{R}^n \)

2. (Pivoting)

 (a) Prove that the matrix

 \[
 \begin{pmatrix}
 0 & 1 \\
 1 & 1
 \end{pmatrix}
 \]

 does not have an \(LU \) decomposition. Hint: assume that such decomposition exists and then show that this brings a contradiction.

 (b) Does the system

 \[
 \begin{pmatrix}
 0 & 1 \\
 1 & 1
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix} = \begin{pmatrix}
 a \\
 b
 \end{pmatrix}
 \]

 have a unique solution for all \(a, b \in \mathbb{R} \)? (Why?)

 (c) How can you modify the system in part (b) so that \(LU \) decomposition applies?

3. (Partial Pivoting)

 Consider the linear system, \(Ax = b \), where \(A \) is the following matrix,

 \[
 A = \begin{pmatrix}
 -5 & 2 & -1 \\
 1 & 0 & 3 \\
 3 & 1 & 6
 \end{pmatrix}
 \]

 (a) Using partial pivoting technique, determine the \(P, L, U \) decomposition of the matrix \(A \), such that \(PA = LU \). (Show EACH STEP in the decomposition.)

 (b) Use the \(P, L, U \) decomposition found in (a) to find the solution to

 \[
 Ax = \begin{pmatrix}
 2 \\
 -2 \\
 1
 \end{pmatrix}
 \] (Show ALL relevant steps).

 (c) Use the \(P, L, U \) decomposition found in (a) to find the solution to

 \[
 Ax = \begin{pmatrix}
 0 \\
 1 \\
 5
 \end{pmatrix}
 \] (Show ALL relevant steps).
4. (Partial Pivoting: MATLAB program)

Write a program to find the LU decomposition of a given $n \times n$ matrix A using **partial pivoting**. The program should return the updated matrix A and the pivot vector p. In MATLAB, name your file mylu.m, the first few lines of which should be as follows:

```matlab
function [a,p]=mylu(a)

% [n n]=size(a); p=(1:n)'; (your code here!)
```

The code above sets n equal to the dimension of the matrix and initializes the pivot vector p. Make sure to store the multipliers m_{ij} in the proper matrix entries. For more help on function m-files see pages 9–13 of the MATLAB Primer by Kermit Sigmon available from the course webpage. You should experiment with a few small matrices to make sure your code is correct. Check if matrices resulting in LU decomposition satisfy $PA = LU$. As a test of your code, in MATLAB execute the statements

```matlab
>>diary mylu.txt
>>format short e
>>type mylu.m
>>a=[2 2 -3;3 1 -2;6 8 1];
>>[a,p]=mylu(a)
>>diary off
```

Print and hand-in the text file containing your program.

5. (a) Consider the matrix

$$A = \begin{bmatrix} 2 & -3 & 1 \\ -4 & 1 & 2 \\ 5 & 0 & 1 \end{bmatrix}.$$

Compute $\|A\|_\infty$ and find a vector x such that $\|A\|_\infty = \|Ax\|_\infty/\|x\|_\infty$.

(b) Find an example of a 2×2 matrix A such that $\|A\|_\infty = 1$ but $\rho(A) = 0$.

This shows that the spectral radius $\rho(A) = \{\max |\lambda| : \lambda \text{ is an eigenvalue of } A\}$ **does not** define a matrix norm.

6. Consider the matrix, right side vector, and two approximate solutions

$$A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \quad b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}, \quad x_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 0.9911 \\ -0.4870 \end{pmatrix}.$$

(a) Show that $x = (2, -2)^T$ is the exact solution of $Ax = b$.

(b) Compute the error and residual vectors for x_1 and x_2.

(c) Find $\|A\|_\infty, \|A^{-1}\|_\infty$ and $\text{cond}_\infty(A)$ (you may use MATLAB for this calculation).
(d) In class we proved a theorem relating the condition number of A, the relative error, and the relative residual. Check this result for the two approximate solutions x_1 and x_2.

7. (LU factorization)

(a) Write a program that takes the output A and p from problem # 4, along with a righthand side b, and computes the solution of $Ax = b$ by performing the forward and backward substitution steps. If you are using MATLAB, name your m-file lusolve.m. The first line of your code lusolve.m should be as follows:

```matlab
function x=lusolve(a,p,b)
(your code here!)
```

Turn in a copy of your code.

(b) The famous Hilbert matrices are given by $H_{ij} = 1/(i + j - 1)$. The $n \times n$ Hilbert matrix H_n is easily produced in MATLAB using `hilb(n)`. Assume the true solution of $H_n x = b$ for a given n is $x = [1, \ldots, 1]^T$. Hence the righthand side b is simply the row sums of H_n, and b is easily computed in MATLAB using $b=sum(hilb(n)')'$. Use your codes mylu.m and lusolve.m to solve the system $H_n x = b$ for $n = 5, 10, 15, 20$. For each n, using the ∞-norm, compute the relative error and the relative residual. Discuss what is happening here. You may find it useful to look at the `cond` command in MATLAB.

8. (Iterative Methods: Analysis).

Recall that an $n \times n$ matrix A is said to be strictly diagonally dominant if

$$
\sum_{j=1, j\neq i}^{n} |a_{ij}| < |a_{ii}| \quad \text{for } i = 1, \ldots, n.
$$

Note that the strict inequality implies that each diagonal entry a_{ii} is non-zero. Suppose that A is strictly diagonally dominant.

(a) Show that the Jacobi iteration matrix satisfies $||B_J||\infty < 1$ and, therefore, Jacobi iteration converges in this case.

(b) For a 2×2 matrix A, show that the Gauss-Seidel iteration matrix also satisfies $||B_{GS}||\infty < 1$ and, hence, Gauss-Seidel iteration converges as well.

The Rockmore Corp. is considering the purchase of a new computer and will choose either the DoGood 174 or the MightDo 11. They test both computers’ ability to solve the linear system

$$
\begin{align*}
34x + 55y - 21 &= 0 \\
55x + 89y - 34 &= 0
\end{align*}
$$
The DoGood 174 computer gives $x = -0.11$ and $y = 0.45$, and its check for accuracy is found by substitution:

\[34(-0.11) + 55(0.45) - 21 = 0.01 \]
\[55(-0.11) + 89(0.45) - 34 = 0.00 \]

The MightDo 11 computer gives $x = -0.99$ and $y = 1.01$, and its check for accuracy is found by substitution:

\[34(-0.99) + 55(1.01) - 21 = 0.89 \]
\[55(-0.99) + 89(1.01) - 34 = 1.44 \]

Which computer gave the better answer? Why?

Suggested / Additional problems for Math 529 / Phys 528 students:

10. **(Special Matrices)**

Consider the matrix

\[
\begin{pmatrix}
 b & -1 & 0 \\
 -1 & 4 & 1 \\
 0 & 1 & 5
\end{pmatrix}.
\]

(a) For what values of b will this matrix be positive definite? (Hint: theorem on page 215 on leading principal submatrices may be useful.)

(b) For what values of b will this matrix be strictly diagonally dominant? (Recall that an $n \times n$ matrix A is said to be strictly diagonally dominant if

\[\sum_{j=1, j \neq i}^{n} |a_{ij}| < |a_{ii}| \quad \text{for } i = 1, \ldots, n. \]

Note that the strict inequality implies that each diagonal entry a_{ii} is non-zero.)

11. Consider a linear system with matrix

\[
A = \begin{pmatrix}
 2 & 1 \\
 1 & 4
\end{pmatrix}
\]

(a) Write down the iteration matrices B_J and B_{GS} for Jacobi’s Method and Gauss–Seidel.

(b) Find the l_∞ norm and spectral radius of the iteration matrix for Jacobi and Gauss-Seidel. (Recall that the spectral radius of a matrix can be calculated by finding the roots of its characteristic polynomial.)

(c) Which of the two iterative methods will converge for an arbitrary starting point $x^{(0)}$? Why?
(d) Write a program to calculate and plot the spectral radius of $B_{\text{SOR}}(\omega)$ for parameter ω in the range $(0, 2)$ in increments of 0.01. Provide the code and the plot. Based on inspection of the graph, what value of ω will lead to the fastest convergence?

(e) Use the theorem on page 234 of Bradie to calculate analytically the optimal relaxation parameter ω for SOR. Does it match the value predicted in Part (d)?

12. Matrix Norms

(a) Prove that if $||A|| < 1$, then

\[||(I - A)^{-1}|| \geq \frac{1}{1 + ||A||}. \]

(b) Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, B is an estimate of A^{-1}, and $AB = I + E$. Show that the relative error in B is bounded by $\|E\|$ (using an arbitrary matrix norm).

13. (Cholesky decomposition) (Cholesky decomposition can be used for symmetric positive definite matrices (see pages 215-217 of the textbook).)

(a) Compute the Cholesky decomposition for matrix

\[
\begin{pmatrix}
16 & -28 & 0 \\
-28 & 53 & 10 \\
0 & 10 & 29
\end{pmatrix}
\]

(b) Construct an algorithm to perform forward and backward substitution on the system $Ax = b$, given a Cholesky decomposition $A = LL^T$ for the coefficient matrix. How many arithmetic operations are required by the algorithm?

(c) Solve the system $Ax = b$ with $b = (8 \ -2 \ 38)^T$ and the above matrix A by using the Cholesky decomposition and then performing forward and backward substitution.