Math 432 - Numerical Linear Algebra - Fall 2013

Homework 5
Assigned: Saturday, September 28, 2013
Due: Friday, October 4, 2013

- Include a cover page and a problem sheet.
- Include all of your scripts and output results.
- Place a comment at the top of each function or script that you submit which includes the name of the function or script.

1. Let A be the 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Use Gaussian elimination to obtain A^{-1} by solving the two systems $Ax_1 = e_1$ and $Ax_2 = e_2$, where e_1 and e_2 are the columns of the 2×2 identity matrix. Note that you can perform both at the same time by considering the augmented system $[A|I]$. Show that A^{-1} exists if and only if $\det(A) \neq 0$.

2. Let $M_1 = \begin{pmatrix} 1 & 0 & 0 \\ m_{2,1} & 1 & 0 \\ m_{3,1} & 0 & 1 \end{pmatrix}$, $M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{3,2} & 1 \end{pmatrix}$, $P_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
 (a) Show that $M_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -m_{2,1} & 1 & 0 \\ -m_{3,1} & 0 & 1 \end{pmatrix}$.
 (b) Show that $M_1^{-1}M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -m_{2,1} & 1 & 0 \\ -m_{3,1} & -m_{3,2} & 1 \end{pmatrix}$.
 (c) Show that $P_1^{-1} = P_1$.

3. Find the LU factorization of A and use it to solve $Ax = b$.

 $A = \begin{pmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ -3 \\ 3 \\ -2 \end{pmatrix}$.

4. Consider the problem $Ax = b$ where A is a tridiagonal matrix. What is the operation count for the forward elimination and the back substitution steps of Gaussian elimination in this case? Count add/sub and mult/div operations separately, then give the overall order of the total operations needed. (Use $O(n^p)$ notation).
5. **Back and Forward Substitution: Matlab Program**

Write two programs, one that performs back substitution on an upper triangular matrix U and another that performs forward elimination on a lower triangular matrix L (you may assume that the diagonal entries of L are all 1). The program for back substitution should begin with:

```matlab
function [x] = backsub(U, b)
    n=length(b);
    (your code here)
```

where $Ux = b$ and U is an upper triangular matrix. Similarly, a program for forward elimination should start with:

```matlab
function [x] = forwardsub(L, b)
    n=length(b);
    (your code here)
```

where $Lx = b$ and L is lower triangular. Test your code on the following systems:

$$ \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} x = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 0 & 0 & 2 \end{bmatrix} y = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} $$

Remember, in Matlab you can solve matrix equations as follows (assuming you have defined the matrix A and the rhs vector b):

```matlab
>> A\b
```

You can use Matlab solutions to check your results. Print and hand-in the text file containing your program as well as outputs.