1. Consider the matrix
\[
\begin{pmatrix}
a & -1 & 0 \\
-1 & 4 & 1 \\
0 & 1 & 5 \\
\end{pmatrix}
\]
(a) For what values of \(a \) will this matrix be positive definite?
(b) For what values of \(a \) will this matrix be strictly diagonally dominant?

2. Compute the Cholesky factorization \(A = HH^T \) of
\[
A = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1.001 & 1.001 \\
1 & 1 & 2 \\
\end{pmatrix}
\]
Solve the system \(Ax = b \), where
\[
b = \begin{pmatrix}
3 \\
3.0020 \\
4.0010 \\
\end{pmatrix}
\]
using the obtained Cholesky factorization. Verify your answer using the MATLAB program \texttt{CHOLES} or Matlab program \texttt{chol}. Note that Matlab program \texttt{chol}(\(A \)) computes the Cholesky factor \(R \) such that \(A = R^T R \), where \(R \) is upper triangular.

3. Let \(H = I - \frac{2uu^T}{u^Tu} \) be a Householder matrix. Then prove that
(a) \(Hu = -u \)
(b) \(Hv = v \) if \(v^Tu = 0 \).

4. Given vector \(x = (1 \ 2 \ 3 \ 4)^T \), compute a Householder matrix \(H = I - \frac{2uu^T}{u^Tu} \) such that \(Hx \) has zeros in the positions 2 through 4. Compute \(Hx \).
5. Find QR factorization of

\[
A = \begin{pmatrix}
10 & 1 & 1 & 1 \\
2 & 10 & 1 & 1 \\
1 & 1 & 10 & 1 \\
1 & 1 & 1 & 10 \\
\end{pmatrix}
\]

using the Householder algorithm. Verify your answer using the MATCOM program \texttt{HOUSEQRN} or Matlab program \texttt{qr} in the form \([Q, R] = \texttt{qr}(A)\).