Write the second-order initial-value problems (11.3) and (11.4) as first-order systems, and derive the equations necessary to solve the systems using the fourth-order Runge-Kutta method for systems.

7. Let \(u \) represent the electrostatic potential between two concentric metal spheres of radii \(R_1 \) and \(R_2 \), with \(R_1 < R_2 \), such that the potential of the inner sphere is kept constant at \(V_1 \) volts and the potential of the outer sphere is 0 volts. The potential in the region between the two spheres is governed by Laplace's equation, which, in this particular application, reduces to

\[
\frac{d^2 u}{dr^2} + \frac{2}{r} \frac{du}{dr} = 0, \quad R_1 \leq r \leq R_2, \quad u(R_1) = V_1, \quad u(R_2) = 0.
\]

Suppose \(R_1 = 2 \text{ in.}, \ R_2 = 4 \text{ in.}, \) and \(V_1 = 110 \text{ volts} \).

a. Approximate \(u(3) \) using the Linear Shooting Algorithm.

b. Compare the results of part (a) with the actual potential \(u(3) \), where

\[
u(r) = \frac{V_1 R_1}{r} \left(\frac{R_2 - r}{R_2 - R_1} \right).
\]

8. Show that if \(y_2 \) is the solution to \(y'' = p(x)y' + q(x)y \) and \(y_2(a) = y_2(b) = 0 \), then \(y_2 = 0 \).

9. Consider the boundary-value problem

\[
y'' + y = 0, \quad 0 \leq x \leq b, \quad y(0) = 0, \quad y(b) = B.
\]

Find choices for \(b \) and \(B \) so that the boundary-value problem has

a. No solution;

b. Exactly one solution;

c. Infinitely many solutions.

10. Attempt to apply Exercise 9 to the boundary-value problem

\[
y'' - y = 0, \quad 0 \leq x \leq b, \quad y(0) = 0, \quad y(b) = B.
\]

What happens? How do both problems relate to Corollary 11.2?

11.2 The Shooting Method for Nonlinear Problems

The shooting technique for the nonlinear second-order boundary-value problem

\[
y'' = f(x, y, y'), \quad a \leq x \leq b, \quad y(a) = \alpha, \quad y(b) = \beta,
\]

is similar to the linear case, except that the solution to a nonlinear problem cannot be expressed as a linear combination of the solutions to two initial-value problems. Instead, we need to use the solutions to a sequence of initial-value problems of the form

\[
y'' = f(x, y, y'), \quad a \leq x \leq b, \quad y(a) = \alpha, \quad y'(a) = t,
\]

involving a parameter \(t \), to approximate the solution to the boundary-value problem. We do this by choosing the parameters \(t = t_k \) so that

\[
\lim_{k \to \infty} y(b, t_k) = y(b) = \beta.
\]
where \(y(x, t_k) \) denotes the solution to the initial-value problem (11.7) with \(t = t_k \) and \(y(x) \) denotes the solution to the boundary-value problem (11.6).

This technique is called a "shooting" method, by analogy to the procedure of firing objects at a stationary target. (See Figure 11.2.) We start with a parameter \(t_0 \) that determines the initial elevation at which the object is fired from the point \((a, \alpha)\) and along the curve described by the solution to the initial-value problem:

\[
y'' = f(x, y, y'), \quad a \leq x \leq b, \quad y(a) = \alpha, \quad y'(a) = t_0.
\]

If \(y(b, t_0) \) is not sufficiently close to \(\beta \), we correct our approximation by choosing elevations \(t_1, t_2, \) and so on, until \(y(b, t_k) \) is sufficiently close to "hitting" \(\beta \). (See Figure 11.3.)
To determine the parameters t_k, suppose a boundary-value problem of the form (11.6) satisfies the hypotheses of Theorem 11.1. If $y(x, t)$ denotes the solution to the initial-value problem (11.7), the problem is to determine t so that

\[(11.8)\quad y(b, t) - \beta = 0.\]

This is a nonlinear equation of the type considered in Chapter 2, so a number of methods are available.

To use the Secant method to solve the problem, we need to choose initial approximations t_0 and t_1 and then generate the remaining terms of the sequence by

\[t_k = t_{k-1} - \frac{(y(b, t_{k-1}) - \beta)(t_{k-1} - t_{k-2})}{y(b, t_{k-1}) - y(b, t_{k-2})}, \quad k = 2, 3, \ldots.\]

To use the more powerful Newton's method to generate the sequence \{t_k\}, only one initial approximation, t_0, is needed. However, the iteration has the form

\[(11.9)\quad t_k = t_{k-1} - \frac{y(b, t_{k-1}) - \beta}{\frac{dy}{dt}(b, t_{k-1})},\]

and requires the knowledge of $(dy/dt)(b, t_{k-1})$. This presents a difficulty since an explicit representation for $y(b, t)$ is not known; we know only the values $y(b, t_0), y(b, t_1), \ldots, y(b, t_{k-1}).$

Suppose we rewrite the initial-value problem (11.7), emphasizing that the solution depends on both x and t as

\[(11.10)\quad y''(x, t) = f(x, y(x, t), y'(x, t)), \quad a \leq x \leq b, \quad y(a, t) = \alpha, \quad y'(a, t) = t.\]

We have retained the prime notation to indicate differentiation with respect to x. Since we need to determine $(dy/dt)(b, t)$ when $t = t_{k-1}$, we first take the partial derivative of (11.10) with respect to t. This implies that

\[\frac{\partial y''}{\partial t}(x, t) = \frac{\partial f}{\partial t}(x, y(x, t), y'(x, t))\]

\[= \frac{\partial f}{\partial x}(x, y(x, t), y'(x, t)) \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}(x, y(x, t), y'(x, t)) \frac{\partial y}{\partial t}(x, t)\]

\[+ \frac{\partial f}{\partial y'}(x, y(x, t), y'(x, t)) \frac{\partial y'}{\partial t}(x, t).\]

Since x and t are independent, $\partial x/\partial t = 0$ and

\[(11.11)\quad \frac{\partial y''}{\partial t}(x, t) = \frac{\partial f}{\partial y}(x, y(x, t), y'(x, t)) \frac{\partial y}{\partial t}(x, t) + \frac{\partial f}{\partial y'}(x, y(x, t), y'(x, t)) \frac{\partial y'}{\partial t}(x, t)\]

for $a \leq x \leq b$. The initial conditions give

\[\frac{\partial y}{\partial t}(a, t) = 0 \quad \text{and} \quad \frac{\partial y'}{\partial t}(a, t) = 1.\]
If we simplify the notation by using \(z(x, t) \) to denote \((\partial y / \partial t)(x, t) \) and assume that the order of differentiation of \(x \) and \(t \) can be reversed, (11.11) with the initial conditions becomes the initial-value problem

\[
z''(x, t) = \frac{\partial f}{\partial y}(x, y', z(x, t)) + \frac{\partial f}{\partial y'}(x, y', z'(x, t)), \quad a \leq x \leq b, \quad z(a, t) = 0, \quad z'(a, t) = 1.
\]

(11.12)

Newton’s method therefore requires that two initial-value problems be solved for each iteration, (11.10) and (11.12). Then from Eq. (11.9),

\[
t_k = t_{k-1} - \frac{y(b, t_{k-1}) - \beta}{z(b, t_{k-1})}.
\]

(11.13)

Of course, none of these initial-value problems is solved exactly; the solutions are approximated by one of the methods discussed in Chapter 5. Algorithm 11.2 uses the fourth-order Runge-Kutta method to approximate both solutions required by Newton’s method. A similar procedure for the Secant method is considered in Exercise 4.

Algorithm 11.2

To approximate the solution of the nonlinear boundary-value problem

\[
y'' = f(x, y, y'), \quad a \leq x \leq b, \quad y(a) = \alpha, \quad y(b) = \beta.
\]

(Note: Equations (11.10) and (11.12) are written as first-order systems and solved.)

INPUT endpoints \(a, b \); boundary conditions \(\alpha, \beta \); number of subintervals \(N \geq 2 \); tolerance \(TOL \); maximum number of iterations \(M \).

OUTPUT approximations \(w_{1,i} \) to \(y(x_i) \); \(w_{2,i} \) to \(y'(x_i) \) for each \(i = 0, 1, \ldots, N \) or a message that the maximum number of iterations was exceeded.

Step 1 Set \(h = (b - a)/N; \)

\[
k = 1;
\]

\[
TK = (\beta - \alpha)/(b - a). \quad \text{(Note: TK could also be input.)}
\]

Step 2 While \(k \leq M \) do Steps 3–10.

Step 3 Set \(w_{1,0} = \alpha; \)

\[
w_{2,0} = TK;
\]

\[
u_1 = 0;
\]

\[
u_2 = 1.
\]

Step 4 For \(i = 1, \ldots, N \) do Steps 5 and 6.

(The Runge-Kutta method for systems is used in Steps 5 and 6.)

Step 5 Set \(x = a + (i - 1)h. \)

Step 6 Set \(k_{1,1} = hw_{2,i-1}; \)

\[
k_{1,2} = hf(x, w_{1,i-1}w_{2,i-1});
\]
\[k_{2,1} = h \left(w_{2,i-1} + \frac{1}{2} k_{1,2} \right); \]
\[k_{2,2} = h f \left(x + h/2, w_{1,i-1} + \frac{1}{2} k_{1,1}, w_{2,i-1} + \frac{1}{2} k_{1,2} \right); \]
\[k_{3,1} = h \left(w_{2,i-1} + \frac{1}{2} k_{2,2} \right); \]
\[k_{3,2} = h f \left(x + h/2, w_{1,i-1} + \frac{1}{2} k_{2,1}, w_{2,i-1} + \frac{1}{2} k_{2,2} \right); \]
\[k_{4,1} = h (w_{2,i-1} + k_{3,2}); \]
\[k_{4,2} = h f(x + h, w_{1,i-1} + k_{3,1}, w_{2,i-1} + k_{3,2}); \]
\[w_{1,i} = w_{1,i-1} + (k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})/6; \]
\[w_{2,i} = w_{2,i-1} + (k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2})/6; \]
\[k'_{1,1} = hu_2; \]
\[k'_{1,2} = h \left[f_y (x, w_{1,i-1}, w_{2,i-1}) u_1
ight. \]
\[+ \left. f_y (x, w_{1,i-1}, w_{2,i-1}) u_2 \right]; \]
\[k'_{2,1} = h \left[u_2 + \frac{1}{2} k'_{1,2} \right]; \]
\[k'_{2,2} = h \left[f_y (x + h/2, w_{1,i-1}, w_{2,i-1}) (u_1 + \frac{1}{2} k'_{1,1}) \right. \]
\[+ \left. f_y (x + h/2, w_{1,i-1}, w_{2,i-1}) (u_2 + \frac{1}{2} k'_{1,2}) \right]; \]
\[k'_{3,1} = h \left(u_2 + \frac{1}{2} k'_{2,2} \right); \]
\[k'_{3,2} = h \left[f_y (x + h/2, w_{1,i-1}, w_{2,i-1}) (u_1 + \frac{1}{2} k'_{2,1}) \right. \]
\[+ \left. f_y (x + h/2, w_{1,i-1}, w_{2,i-1}) (u_2 + \frac{1}{2} k'_{2,2}) \right]; \]
\[k'_{4,1} = h (u_2 + k'_{3,2}); \]
\[k'_{4,2} = h \left[f_y (x + h, w_{1,i-1}, w_{2,i-1}) (u_1 + k'_{3,1}) \right. \]
\[+ \left. f_y (x + h, w_{1,i-1}, w_{2,i-1}) (u_2 + k'_{3,2}) \right]; \]
\[u_1 = u_1 + \frac{1}{6} [k'_{1,1} + 2k'_{2,1} + 2k'_{3,1} + k'_{4,1}]; \]
\[u_2 = u_2 + \frac{1}{6} [k'_{1,2} + 2k'_{2,2} + 2k'_{3,2} + k'_{4,2}]. \]

Step 7 If \(|w_{1,N} - \beta| \leq \text{TOL}\) then do Steps 8 and 9.

Step 8 For \(i = 0, 1, \ldots, N\)

set \(x = a + ih;\)

OUTPUT \((x, w_{1,i}, w_{2,i});\)

Step 9 (Procedure is complete.)

STOP.

Step 10 Set \(TK = TK - \left(\frac{w_{1,N} - \beta}{u_1} \right)\); (Newton's method is used to compute \(TK\).)

\(k = k + 1.\)

Step 11 OUTPUT ('Maximum number of iterations exceeded');

(Procedure completed unsuccessfully.)

STOP.

In Step 7, the best approximation to \(\beta\) we can expect for \(w_{1,N}(t_k)\) is \(O(h^n)\), if the approximation method selected for Step 6 gives \(O(h^n)\) rate of convergence.
The value \(t_0 = TK \) selected in Step 1 is the slope of the straight line through \((a, \alpha)\) and \((b, \beta)\). If the problem satisfies the hypotheses of Theorem 11.1, any choice of \(t_0 \) will give convergence; but given a good choice of \(t_0 \), the convergence will improve and the procedure will work for many problems that do not satisfy these hypotheses.

Example 1 Consider the boundary-value problem

\[
y'' = \frac{1}{8} (32 + 2x^3 - yy'), \quad 1 \leq x \leq 3, \quad y(1) = 17, \quad y(3) = \frac{43}{3},
\]

which has the exact solution \(y(x) = x^2 + 16/x \).

Applying the Shooting method given in Algorithm 11.2 to this problem requires approximating solutions to the initial-value problems

\[
y'' = \frac{1}{8} (32 + 2x^3 - yy'), \quad 1 \leq x \leq 3, \quad y(1) = 17, \quad y'(1) = t_k,
\]

and

\[
z'' = \frac{\partial f}{\partial y} z + \frac{\partial f}{\partial y'} z' = -\frac{1}{8} (y'z + yz'), \quad 1 \leq x \leq 3, \quad z(1) = 0, \quad z'(1) = 1,
\]

at each step in the iteration.

| \(x_i \) | \(w_{L,i} \) | \(y(x_i) \) | \(|w_{L,i} - y(x_i)| \) |
|---|---|---|---|
| 1.0 | 17.000000 | 17.000000 | |
| 1.1 | 15.755495 | 15.755455 | 4.06 \(\times \) 10^{-5} |
| 1.2 | 14.773389 | 14.773333 | 5.60 \(\times \) 10^{-5} |
| 1.3 | 13.997752 | 13.997692 | 5.94 \(\times \) 10^{-5} |
| 1.4 | 13.388629 | 13.388571 | 5.71 \(\times \) 10^{-5} |
| 1.5 | 12.916719 | 12.916667 | 5.23 \(\times \) 10^{-5} |
| 1.6 | 12.560046 | 12.560000 | 4.64 \(\times \) 10^{-5} |
| 1.7 | 12.301805 | 12.301765 | 4.02 \(\times \) 10^{-5} |
| 1.8 | 12.128923 | 12.128889 | 3.14 \(\times \) 10^{-5} |
| 1.9 | 12.031081 | 12.031053 | 2.84 \(\times \) 10^{-5} |
| 2.0 | 12.000023 | 12.000000 | 2.32 \(\times \) 10^{-5} |
| 2.1 | 12.029066 | 12.029048 | 1.84 \(\times \) 10^{-5} |
| 2.2 | 12.112741 | 12.112727 | 1.40 \(\times \) 10^{-5} |
| 2.3 | 12.246532 | 12.246522 | 1.01 \(\times \) 10^{-5} |
| 2.4 | 12.426673 | 12.426667 | 6.68 \(\times \) 10^{-6} |
| 2.5 | 12.650004 | 12.650000 | 3.61 \(\times \) 10^{-6} |
| 2.6 | 12.913847 | 12.913846 | 9.17 \(\times \) 10^{-7} |
| 2.7 | 13.215924 | 13.215926 | 1.43 \(\times \) 10^{-6} |
| 2.8 | 13.554282 | 13.554286 | 3.46 \(\times \) 10^{-6} |
| 2.9 | 13.927236 | 13.927241 | 5.21 \(\times \) 10^{-6} |
| 3.0 | 14.333327 | 14.333333 | 6.69 \(\times \) 10^{-6} |
If the stopping technique

$$|w_{1,N}(t_k) - y(3)| \leq 10^{-5}$$

is used, this problem requires four iterations and \(t_4 = -14.000203 \). The results obtained for this value of \(t \) are shown in Table 11.2.

Although Newton's method used with the shooting technique requires the solution of an additional initial-value problem, it will generally be faster than the Secant method. Both methods are only locally convergent, since they require good initial approximations. For a general discussion of the convergence of the shooting techniques for nonlinear problems, the reader is referred to the excellent book by Keller [K,L]. In that reference, more general boundary conditions are discussed. It is also noted that the shooting technique for nonlinear problems is sensitive to round-off errors, especially if the solution \(y(x) \) and \(z(x, t) \) are rapidly increasing functions on \([a, b]\).

Exercise Set 11.2

1. Use the Nonlinear Shooting Algorithm with \(h = 0.5 \) to approximate the solution to the boundary-value problem

$$y'' = -(y')^2 - y + \ln x, \quad \text{for} \quad 1 \leq x \leq 2, \quad \text{where} \quad y(1) = 0 \quad \text{and} \quad y(2) = \ln 2.$$

Compare your results to the actual solution \(y(x) = \ln x \).

2. Use the Nonlinear Shooting Algorithm with \(h = 0.25 \) to approximate the solution to the boundary-value problem

$$y'' = 2y^3, \quad \text{for} \quad 1 \leq x \leq 2, \quad \text{where} \quad y(1) = \frac{1}{4} \quad \text{and} \quad y(2) = \frac{1}{5}.$$

Compare your results to the actual solution \(y(x) = 1/(x + 3) \).

3. Use the Nonlinear Shooting method with \(TOL = 10^{-4} \) to approximate the solution to the following boundary-value problems. The actual solution is given for comparison to your results.

a. \(y'' = y^3 - y'y', \quad 1 \leq x \leq 2, \quad y(1) = \frac{1}{2}, \quad y(2) = \frac{1}{3} \); use \(h = 0.1 \) and compare the results to \(y(x) = (x + 1)^{-1} \).

b. \(y'' = 2y^3 - 6y - 2x^3, \quad 1 \leq x \leq 2, \quad y(1) = 2, \quad y(2) = \frac{5}{2} \); use \(h = 0.1 \) and compare the results to \(y(x) = x + x^{-1} \).

c. \(y'' = y' + 2(y - \ln x)^3 - x^{-1}, \quad 1 \leq x \leq 2, \quad y(1) = 1, \quad y(2) = \frac{1}{2} + \ln 2 \); use \(h = 0.1 \) and compare the results to \(y(x) = x^{-1} + \ln x \).

d. \(y'' = [x^2(y')^2 - 9y^2 + 4x^6]/x^5, \quad 1 \leq x \leq 2, \quad y(1) = 0, \quad y(2) = \ln 256 \); use \(h = 0.05 \) and compare the results to \(y(x) = x^3 \ln x \).

4. Change Algorithm 11.2 to incorporate the Secant method instead of Newton's method. Use \(t_0 = (\beta - \alpha)/(b - a) \) and \(t_1 = t_0 + (\beta - y(b, t_0))/(b - a) \).

5. Repeat Exercise 3(a) and 3(c) using the Secant algorithm derived in Exercise 4, and compare the number of iterations required for the two methods.