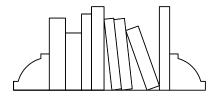
True blue greens

Ecological footprint

Greens

Sprouts

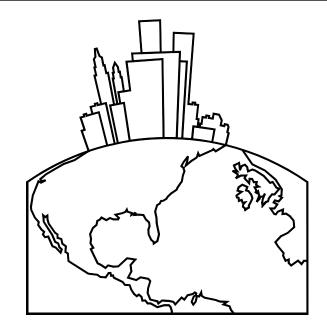

Browns

Grousers

Introduction

Lecture Outline:

- 1. INTRODUCTION TO ENVIRONMENTAL SCIENCE
 - A. Environmental Science—Aims and Challenges
 - B. Public Views of the Environment in the PNW
 - C. Concept of Sustainability
 - D. The Scientific Method
 - E. Public vs Scientists
 - F. Science and Society
 - G. Major U.S. Laws


Learning Objectives:

When you are finished with this unit you should be able to:

- 1. Describe the world views of cornucopianism and environmentalism.
- 2. Define environmental science, the concept of sustainability, and ecological footprint.
- 3. Name and describe the steps of the scientific method.
- 4. Describe the science literacy level of the typical American.
- 5. Describe the importance of science in society's environmental decisions.
- Define environmental wisdom and distinguish between public and scientist priorities in environmental issues.
- 7. Know the impact of major bills passed by Congress in the 1970s.
- 8. Know and define the four principles of ecosystem sustainability.
- 9. Describe how people in the Pacific Northwest view the environment.

Terms You Should Know:

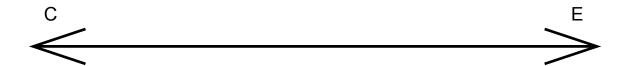
- Cornucopian world view
- Frontier ethic
- Natural resources
- Sustainability
- Scientific method
- Hypothesis
- Controlled experiments
- * Clean Water Act (CWA)
- Endangered Species Act (ESA)
- ♦ Safe Drinking Water Act (SDWA)
- Clean Air Act (CAA)
- Environmental wisdom
- * Ecology
- **⋄** Ecologists
- Information overload
- Theory
- Four Principles of Ecosystem Sustainability

Reading Assignment:

Brennan and Withgott: Chapter 1; pages 2-22.

1. INTRODUCTION TO ENVIRONMENTAL SCIENCE

A. ENVIRONMENTAL SCIENCE—AIMS AND CHALLENGES


Environmental Science—the branch of science concerned with environmental issues

1.	W	V∩ı	rld	V	ie۱	NS
	. •	7 V	ıu			/ V

- Set of assumptions that a person holds regarding the nature of the world and how it works
- 2 opposing views

_

Continuum:

DEP—Dominant Environmental Perspective

Groups:

CORNUCOPIANISM — all parts of the environment are natural resources to be exploited for the advantage of humans (singly or collectively)

- Assumes resources are infinite
- Traditional way Western civilization has looked at things
- Europe N. America
 S. America
 Austrialia
- American movement:

13 colonies Kentucky Missouri California Alaska

Oceans Space

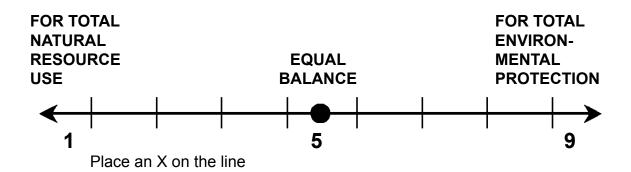
- Rainforests of Brazil, Indonesia....
- Oil fields

•

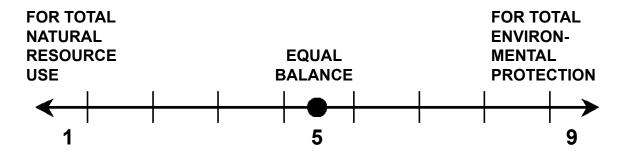
- Air, water, soil, minerals, plant and animal species are there for our use
- Has been a necessary part of the progress of civilization... but to what extent?

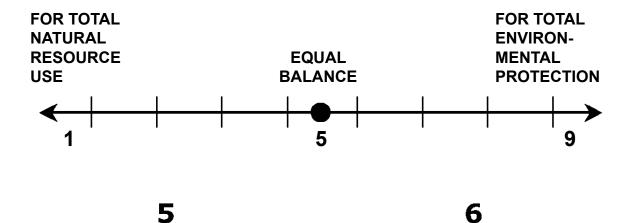
ENVIRONMENTALISM — natural resources are products of the natural environment; natural resources are not unlimited

•

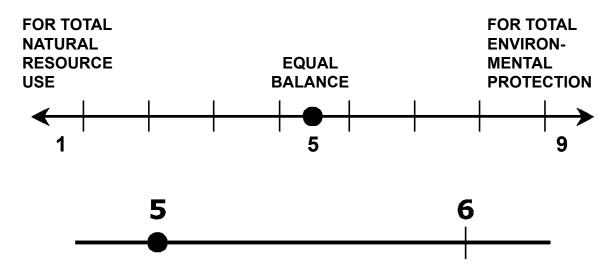

ullet

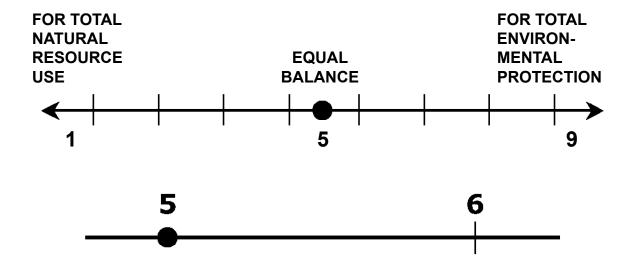
- Many native "primitive" cultures are based on environmentalism. Can you name some?
- Concept is in vogue in USA, Europe and some parts of the developed world; however, concepts do not necessarily translate to action
- Environmentalists are convinced that increasing exploitation is unsustainable


B. PUBLIC VIEWS OF THE ENVIRONMENT IN THE PACIFIC NORTHWEST

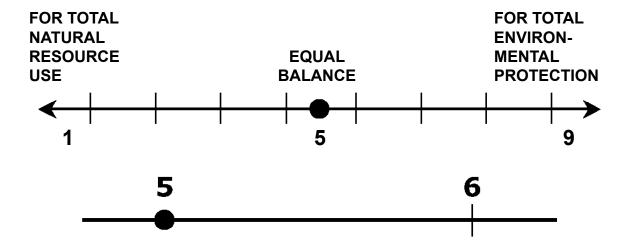

 2002 Survey Question (University of Idaho)

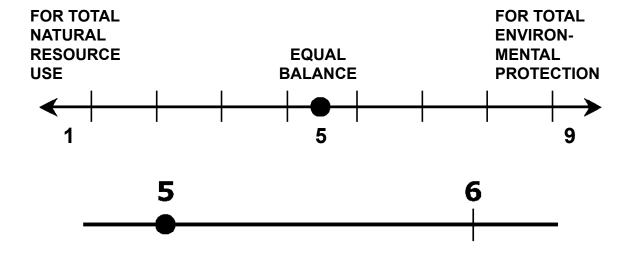
HOW DO YOU SEE YOURSELF ON ENVIRONMENTAL ISSUES COMPARED TO THE AVERAGE AMERICAN ADULT?


HOW DO YOU SEE YOURSELF?



Likelihood Ratio Chi-Square = 0.0053


HOW DO YOU SEE YOURSELF? — AGE



Likelihood Ratio Chi-Square = < 0.0001

HOW DO YOU SEE YOURSELF? — TIME IN PNW

HOW DO YOU SEE YOURSELF? — COMMUNITY SIZE

Likelihood Ratio Chi-Square = 0.0178

Important issues to public in the Pacific Northwest:

	Very or extremely important			
Issue	2012	2007	2002	
		%		
1. Drinking water				
2. Clean rivers				
3. Water for AG				
4. Biodiversity				

- 5. Wetlands
- 6. Food quality/quantity
- 7. Energy
- 8. Global warming
- 9. Overpopulation
- 10. Air pollution

THE USA Addit Fubulation	The	A Adult Population
--------------------------	-----	--------------------

•	5	Distir	ict (Gro	ups

10%

5%

•

•

30%

• can go either way on issues

25%

•

30%

- vocally hostile toward environment
- •

•

In summary:

10% —

There is a 40–50% overlap between the two groups

C. CONCEPT OF SUSTAINABILITY

– Example:

SUSTAINABILITY -	refers to wheth	er or not a process	s can be continued	d indefinitely
------------------	-----------------------------------	---------------------	--------------------	----------------

SU	ST	AINABILITY — refers to whether or not a process can be continued inde
,	•	If a process is not sustainable—a dead end will be reached
,	•	
	•	What about politicians?
		spotted owls and NW forests
		_
1.	Fo	ur Principles of Ecosystem Sustainability
	1.	Recycling
		_
		 Example: plants die; decompose; nutrients nourish other plants
•	2	Energy
•		_
		 Example: plants capture energy from the sunlight
;	3.	Population
		· -

	4. Bi	iodiversity
	_	
	_	Example:
2.	Conc	ept of Ecological Footprint
EC	COLOC	GICAL FOOTPRINT
✓	As glo	obal affluence has increased
✓	As the	e human population has increased
	_	
	_	measures the total amount of the Earth's surface "used" by a given person or population
	_	
	_	expresses impact in cumulative amount of
		✓
		✓
	to	produce raw materials for consumption
	_	
	_	more affluent people (countries) have bigger ecological footprints
	_	
	_	

_

_

ECOLOGICAL FOOTPRINTS

- Based on 6.5 B people -- there are 4.9 acres per person on this planet
- The average ecological footprint in the world is 6.9 acres

_

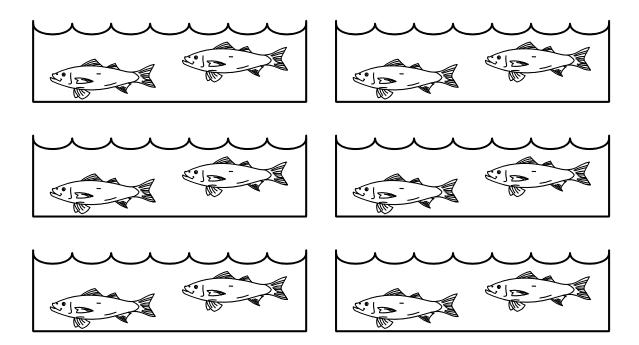
USA vs	Bang	ladesh
--------	------	--------

 25 acre footprint vs 1.2 acre footprint
_
 USA population will grow by 100,000,000 people over the next 50 years
✓
D. THE SCIENTIFIC METHOD
1. What is science?
SCIENCE — seeks to acquire and explain factual knowledge, not just belief and opinion.
2. The Scientific Method
Technique of compiling scientific information
•
•
Five parts to the scientific method
1. Observations and Facts
Observations should be measurable
 Observations are restricted to only impressions gained through one or more of the five basic senses in their normal state:
\checkmark
\checkmark
\checkmark
\checkmark

- Observations must be verifiable to be considered facts

- Observation of a spaceship? if you can not verify; it is not a fact
- Fish are dying in a stream; measure dead bodies

2. Hypothesis and Testing


- Numerous observations may lead a scientist to make an educated guess about something
- Fish example: pollutant a is causing disease x in fish

3. Controlled Experiments

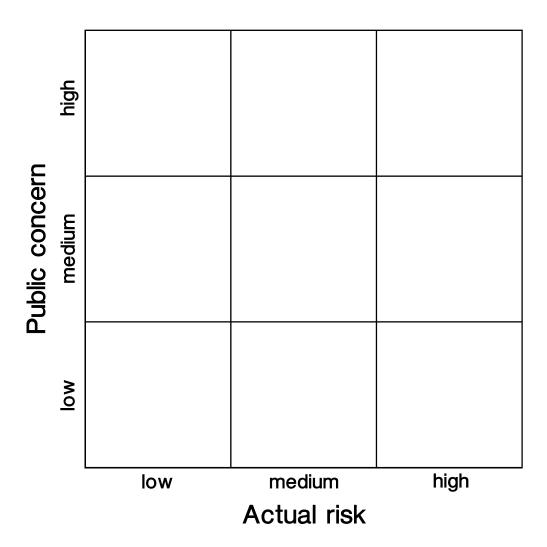
- An experiment to test a hypothesis
- Controlled means two groups, a test group and a control group

_

 Fish example: one group of fish is exposed to no pollutant; all groups of fish are treated exactly the same except for exposure to pollutant a

4. Formation of Theories

 When lots of pieces of information are brought together into a unifying concept, you have a theory


- What is Creationism?
- 5. Principles and Natural Laws
 - Provable statements about matter or energy that appear to be without exception
 - i.e., Law of Gravity

E. PUBLIC vs SCIENTISTS

• Perception vs Reality?

Place the following issues in a box in the following figure:

- ✓ Air pollution (AP)
- √ Asbestos (AS)
- ✓ Global warming (GW)
- ✓ Hazardous waste (HW)
- ✓ Indoor air pollution (IAP)
- ✓ Indoor radon (IR)
- ✓ Nuclear accidents (NA)
- ✓ Old dump sites (ODS)
- ✓ Ozone layer depletion (OLD)
- √ Sewage (S)

F. SCIENCE AND SOCIETY

2003 –

2011 –

ECOLOGY — the study of the relationships among organisms and between organisms and their environment
Scientists that study ecology are called <i>ECOLOGISTS</i>
Does society trust science?
Yes
No
Historical perspective:
Back in the 1950s the Soviets launched Sputnik; panic in USA
• 1960—new emphasis on science, technology and space; science held in high esteem
 1960-1972—massive training of scientists and engineers;
•
•
• Today —
 Percent of public that reads an article in a scientific magazine or journal once a month (i.e. Scientific American, Natural History)
1964 –
1970 –
1990 –
1997 –
2004 –
2011 –
 Percent of public that can sort out scientific data concerning an every day controversy
1963 –
1970 –
1984 –
1991 –

• WI	nat went wrong? Where did science lose?
_	
_	
_	
_	
_	
• Ca	n the public sort out data?
• If t	hey can not, who will they trust to do so for them?
G. MAJOR	US LAWS
	ly 1970s Congress passed several key laws that changed the way we interacted ne environment
1. Clean	Air Act (CAA)
•	
•	
2. Clean	Water Act (CWA)
•	
•	
1.	
2.	

3. Safe Drinking Water Act (SWDA)
•
•
4. Endangered Species Act (ESA)
•
•
1.
2.
3