# Environmental Science 101

# **Air Resources**

# Lecture Outline:

#### **10. AIR POLLUTION**

- A. The Atmosphere—An Introduction
- B. Background Information About Air Pollution
- C. Six Principal Pollutants
- D. Air Toxics
- E. Pollutant Sources and Control Strategies
- F. Indoor Air Pollution



# Learning Objectives:

When you are finished with this unit you should be able to:

- 1. Describe the various layers of the atmosphere and understand the temperature gradient within each layer.
- 2. Describe the processes that cause air pollution.
- 3. Trace the origins of industrial smog and photochemical smog.
- 4. Describe the Clean Air Act of 1970 and 1990 and how implementation affected air quality.
- 5. Name the six major air pollutants.
- 6. Describe the effects of pollutants on humans, crops, forests, and materials.
- Analyze the costs and benefits associated with air pollution controls.
- 8. Describe the major sources of indoor air pollution and compare its impact to outdoor air pollution.

# Terms You Should Know:

- ♦ Air pollutants
- \* Threshold level
- Industrial smog
- \* Photochemical smog
- Temperature inversion
- Clean Air Act of 1970
- Ambient standards
- Suspended particulate matter
- Volatile organic compounds
- \* Troposphere
- \* Stratosphere
- Mesosphere

- Carbon monoxide
- Nitrogen oxides
- \* Sulfur oxides
- ♦ Ozone
- Photochemical oxidants
- Radon
- Synergistic effect
- ✤ Primary pollutants
- ✤ Secondary pollutants
- Criteria pollutants
- ♦ Clean Air Act of 1990
- Catalytic converter
- \* Tropopause
- \* Stratopause
- \* Thermosphere



## **Reading Assignment:**

Brennan and Withgott: Chapter 17; pages 460-490. Fall 2012

# **10. AIR POLLUTION**

# A. THE ATMOSPHERE - AN INTRODUCTION

The atmosphere is composed of several layers:

Diagram of the atmosphere:



TROPOSPHERE—the lowest layer

- Up to 7 miles (11 km) above the Earth's surface
- Gets colder with increasing altitude
- •
- Contains most of the water vapor in atmosphere
- •
- Pollution can be washed back to the Earth's surface as precipitation

•

STRATOSPHERE—layer between 7 and 31 miles (11 to 50 km) above the Earth's surface

- •
- Temperature increases because of **OZONE**
- Contains the OZONE SHIELD
- O<sub>3</sub> (ozone) absorbs high energy radiation emitted by the sun
- •
- •

**MESOSPHERE**—layer above the stratosphere

## THERMOSPHERE or CHEMOSPHERE—layer above the mesosphere

- Most of our concern is with things happening in the troposphere and stratosphere
- 3 major areas of concern:
  - -
  - —

# **B. BACKGROUND INFORMATION ABOUT AIR POLLUTION**

AIR POLLUTANTS—substances in the atmosphere that have harmful effects

THRESHOLD LEVEL—the pollutant level below which no ill effects are observed

- Effect caused by pollutant depends on:
  - -

#### DOSE—concentration X time of exposure



#### -

## Three factors determine the level of air pollution:

- 1.
- 2. Amount of space into which the air pollutants are dispersed
- 3. Mechanisms that remove pollutants from the air
- Natural pollutants:

4

INDUSTRIAL SMOG-grayish mixture of soot, sulfurous compounds, and water vapor

**PHOTOCHEMICAL SMOG**—brownish haze; over cities, results from sunlight driven chemical reaction among N oxides and hydrocarbons, mainly from auto exhausts

#### Certain conditions intensify smog:

•

TEMPERATURE INVERSION—cooler air below warmer air layer; traps smog



- Long-term temperature inversions can result in dangerous conditions—*AIR POLLUTION DISASTERS*
- Air pollution can also impact plants:

5

- Clean Air Act of 1970 (CAA) (amended in 1977 and 1990)
  - -
  - sets AMBIENT STANDARDS—levels that need to be achieved to protect the environment and human health

#### Four stages involved in meeting standards:

- 1.
- 2. Tie pollutants to health effects, so that a standard may be set
- 3.
- 4.
- Air quality is better in most large cities today than in the mid-1900s

## C. SIX PRINCIPAL POLLUTANTS

Six major pollutants

- 1. Carbon Monoxide (CO)
  - •
  - Poisonous—forms when carbon in fuel is not burned completely
  - Component of motor vehicle emissions (60% of all emissions)
  - Particular problem in cities with cold air inversion in winter (SPOKANE)
  - i. CO Trends
  - •
  - Transportation still accounts for 77% of emissions
- 2. Lead
  - Pb is toxic (affects kidneys, nervous system, other organs)
  - In the past the major source was leaded gasoline

- i. Pb Trends
- •
- 99% decrease due to highway vehicles
- 3. Nitrogen Dioxide (NO<sub>2</sub>)
  - NO<sub>x</sub> describes NO and NO<sub>2</sub>
  - Major sources include:
    - \_
    - \_

  - —
  - •

  - •
  - •
  - i.  $NO_x$  Trends
  - •
  - •
- 4. Ground-Level Ozone (O<sub>3</sub>)
  - Highly toxic to plants and animals
  - •
  - •

- VOCs are emitted from motor vehicles and industrial sources
- •
- i. O<sub>3</sub> Trends
- Ozone concentrations decreased 19% between 1988 and 1998
- •
- •
- 5. Suspended Particulate Matter (SPM)
  - Also called the PM–10 standard
  - •
  - •
  - Dust, smoke, soot, combustion in motor vehicles and power plants
  - •
  - In 1997 EPA proposed changing the standard to PM-2.5
  - i. SPM Trends
  - •
  - Switch to PM-2.5 standard would put many cities out of compliance
- 6. Sulfur Dioxide  $(SO_2)$ 
  - SO<sub>2</sub> gas is poisonous to plants and animals
  - •

- ٠
- •
- i. SO<sub>2</sub> Trends
- 12% decrease in emissions between 1988 and 1997

# **D. AIR TOXICS**

• Are chemicals known to cause serious health effects or environmental problems

Sources:

-

200+ air toxics identified

- ----
- Emission standards exist for 27 air toxics

Large Emissions:

Bhopal, India 1984

✓ ✓ ✓

Small Emissions:

 $\checkmark$  the norm

✓

✓ over 8,000,000 tons/year in USA

- 1. Adverse effects of air pollution on humans, plants, and materials
  - a. Effects on human health

•

• **SYNERGISM:** 2 + 2 = 7

alcohol + drugs =

air pollution + disease =

### Chronic effects of pollution:

Poland—has world's worst air (Upper Silesia)

- respiratory disease is 47% higher than in rest of country
- Lead has special interest—deadly!

# E. POLLUTANT SOURCES AND CONTROL STRATEGIES

- Most air pollutants are direct and indirect byproducts of burning:
  - -
- With complete combustion:

but combustion is seldom complete!

#### When you burn fuels and wastes:

\_

• At high combustion temperatures:

 $\rm N_{2} \longrightarrow$ 

- Coal + combustion
- Pb is treated separately—leaded gasoline

#### PNW States — Percentile Ranking

|                 |                |         |    | amang |    |
|-----------------|----------------|---------|----|-------|----|
| Pollutant       | ID             | WA      | OR | AK    | СА |
| со              |                |         |    |       |    |
| NO <sub>x</sub> |                |         |    |       |    |
| PM-10           |                |         |    |       |    |
| SO <sub>2</sub> |                |         |    |       |    |
| Ozone           |                |         |    |       |    |
| Non-attainme    | ent areas (cou | inties) |    |       |    |
| -               |                |         |    |       |    |
|                 |                |         |    |       |    |
| WA –            |                |         |    |       |    |
| ID –            |                |         |    |       |    |
| OR –            |                |         |    |       |    |
| AK –            |                |         |    |       |    |
|                 |                |         |    |       |    |
| PM-2.5 -        |                |         |    |       |    |
|                 |                |         |    |       |    |
| Air Toxics –    |                |         |    |       |    |
|                 |                |         |    |       |    |
| See 1997 tre    | nds report at: |         |    |       |    |

2. Control strategies

## 1970 CAA strategy was to:

• Regulate air pollution to the point that **CRITERIA POLLUTANTS** remained below primary standard levels

Today:

 Total pollutants have been reduced by 34%, while population and economic activity have increased

# CAA of 1990 addresses failures of the 1970 and 1977 bills:

- Targeting specific pollutants more directly
- •
- a. Particulates (SMPs)
  - Prior to 1970 most SMPs were from open burning of refuse and industrial stacks
  - Stack emissions reduced by installing filters or electrostatic precipitators—WORKED
  - Wood stoves are a major problem!
  - Pollutants from motor vehicles
    - autos, trucks, buses
    - -
    - \_
    - \_
    - CAA of 1970 wanted a 90% reduction in auto emissions by 1975; unrealistic ... but, a 95% reduction occurred between 1970 and 1992

# Technology:

Computerized control of fuel mixture and ignition timing

**CATALYTIC CONVERTER**—oxidizes VOCs to CO<sub>2</sub> + H<sub>2</sub>O; oxidizes CO to CO<sub>2</sub>; no NO<sub>x</sub> control

| 1. |  |  |  |
|----|--|--|--|
| 2. |  |  |  |
| 3. |  |  |  |

- 3. Evaluation
  - a. The cost of controlling air pollution

### 1990 poll:

75% of Americans agree that environmental improvements should be made regardless of cost

Idahoans:

- Pollution control costs
  - Health?
- b. Future directions
  - 1970s—Los Angeles
  - 1990s—Los Angeles
    - emission free vehicles
    - no BBQ fluids in CA

# F. INDOOR AIR POLLUTION

•

Threefold problem:

- 1. Increasing numbers and kinds of products producing hazardous fumes
- 2. Building better insulated homes—pollution traps
- 3. More exposure to indoor than outdoor pollution (average American spends 90% of life indoors)
- 1. Sources of indoor air pollution
  - Formaldehyde and synthetic organic compounds
    - ---
  - Incomplete combustion and impurities from fuel fired heating systems
    - \_

    - -
    - \_
  - Fumes from household cleaners
  - •
  - Pesticides
  - •
  - Aerosol sprays

15

- •
- Asbestos
- Smoking
- 2. Importance of Indoor Air Pollution
  - a. Deaths (annual)

Indoor

Outdoor

Daily basis:

\* huge issue in HDCs, MDCs, and LDCs

LDCs —

- \_
- -
- -
- \_

b. Lung cancer

Radon —

\_

c. Mold, fungi, and bacteria