
Environmental Science 101

Air Resources

Lecture Outline:

12. ACID RAINFALL

- A. Principles of Acid Deposition
 - 1. Acids and Bases
 - 2. Extent and Potency of Acid Deposition
 - 3. Source of Acid Deposition
- B. Effects of Acid Deposition
 - 1. Aquatic Ecosystems
 - 2. Forest Ecosystems
 - 3. Effects on Humans and Artifacts
- C. Coping with Acid Deposition
 - 1. Ways to Reduce Emissions
 - 2. Political Developments
 - 3. Title IV of the CAA of 1990
 - 4. EPA's Acid Rain Program

Learning Objectives:

When you are finished with this unit you should be able to:

- 1. Understand pH, acids, and bases.
- 2. Discuss the two major acidic pollutants and their sources.
- 3. Describe the effects of acid deposition on aquatic ecosystems, forests, and human artifacts.
- 4. List the major strategies for controlling acid emissions and evaluate their effectiveness.
- Understand the politics of acid deposition and list the provisions of Title IV of the Clean Air Act of 1990.

Terms You Should Know:

- Acids
- ♦ Bases
- Acid deposition
- Acid precipitation
- $\ensuremath{\ast}$ Title IV of the Clean Air Act
- γрΗ
- ✤ Dead lakes

Brennan and Withgott: Chapter 17; pages 482-486. 1

12. ACID RAINFALL

A. PRINCIPLES OF ACID DEPOSITION

- **ACID DEPOSITION**—any precipitation that is more acid than normal; includes dry particles falling to the Earth.
- Precipitation is often 10 to 1,000 times more acidic than normal in industrialized areas
- 1. Acids and Bases
 - pH scale—scale from 0 to 14
 - pH 7 is neutral
 - pH values below 7.0 are termed acidic
 - pH values above 7.0 are termed basic or alkaline
- pH-negative log of the H⁺ ion concentration
 - At pH 7.0:
 - $H^+ = OH^-$
 - H⁺—acid OH⁻—base

Compared to pH 7.0:

- рН 6.0 рН 5.0 рН 4.0 рН 3.0 рН 8.0 рН 9.0—
- 2. Extent and Potency of Acid Deposition
 - Normal precipitation has a pH of 5.6

Why?

- So acid precipitation is rainfall with a pH of 5.5 or less
- •
- Precipitation + dry particle fallout = acid deposition

Extent of Acid Deposition:

- _
- _
- _
- pH of precipitation may be as low as 4.0 to 4.5
- lowest precipitation pH value observed was 2.8 east of Los Angeles

3. Source of Acid Deposition

- In acid precipitation there is:
 - sulfuric acid
 - nitric acid
- Natural sources of acid precipitation:
 - 50,000,000 to 70,000,000 tons S/year:
 - \checkmark
 - \checkmark
 - ✓

- 30,000,000 to 40,000,000 tons N/year:
 - ✓ ✓ ✓
- Human-made sources of acid precipitation:
 - 100,000,000 to 130,000,000 tons SO_2 /year
 - 25,000,000 to 35,000,000 tons NO_x/year
 - human additions have increased 5X since 1900
- USA statistics:
 - 21,000,000 tons SO₂/year
 - \checkmark

✓

1

20,000,000 tons NO_x/year

- **B. EFFECTS OF ACID DEPOSITION**
 - 1. Aquatic Ecosystems
 - pH values in aquatic ecosystems are critical, as pH affects:
 - ---
 - Natural pH range:
 - Severe stress when pH becomes more acid
 - Acidification

dead lakes

6,750 1,300

> 250

- Can remediate dead lakes with lime (CaCO₃)
 - _
- 2. Forest Ecosystems
 - Serious problems
 - _
 - if forest ecosystems collapse, then animals will follow
- 3. Effects on Humans and Artifacts
 - Limestone and marble building materials weather rapidly in the presence of acids
 - •

C. COPING WITH ACID DEPOSITION

- Impacts cross national boundaries:
 - USA

acid materials generated in the Ohio River Valley fall in New England and eastern Canada

- Western Europe

acid materials generated in England, France, Germany, and the Benelux countries impacts forests in Sweden and Finland

1. Ways to Reduce Emissions

Scientists say:

- a 50% reduction in emissions would prevent further acidification of water bodies and damage to forests (e.g. stabilize the problem)
- the main culprit is the burning of coal for electricity (USA and Europe) and in industrial plants (Europe)

Strategies for reducing SO₂:

- (1)
- (2)
- (3)
- (4)
- (5)
- (6) Reductions in electricity consumption

Analysis:

- strategies 1 and 2 are too expensive
- strategy 3 is difficult to retrofit into existing plants
- strategy 4
- strategies 5 & 6 require a major shift in USA energy policy

2. Political Developments

- The scientific data is collected
- •

- politicians from affected countries (Canada, Sweden, Finland) wanted action from countries that were responsible for emissions
- politicians from countries causes emissions (USA, Western Europe) wanted further proof that they actually were causing the problems
- 3. Title IV of the Clean Air Act (CAA) of 1990
 - •
 - Mandates reductions in SO₂ and NO_x levels
- 4. EPA's Acid Rain Program
 - •
 - Goal is to reduce SO₂ and NO_x emissions
 - reduce SO_2 emissions by 10,000,000 tons between 1980 and 2010
 - reduce NO_x emissions by 2,000,000 tons compared to 1980 levels
 - Phase I
 - -
 - - targets largest and most polluting power plants
 - —
 - Phase I Progress:

SO₂ Emissions: (core 263 plants)

Year	SO ₂	Allowable
	(millions of tons)	
1980		
1990		
1995		
1996		
1997		

Year	NO_x emissions (millions of tons)	
1990		
1996		
1997		

- Phase II
 - —
 - set emission restrictions on small coal-, gas-, and oil-fired plants
 - _
- Progress to Date:
 - concentrations of sulfates in precipitation exhibited a dramatic and unprecedented reduction
 - compared to trend predictions forecast in 1980 from 1983 through 1994, sulfates are estimated to be 38% lower than if no action had been taken
 - —
 - —