Environmental Science 101

Water

Fall 2012

Lecture Outline:

16. SURFACE WATER POLLUTION

- A. Two Kinds of Aquatic Plants
- B. Upsetting the Balance by Nutrient Enrichment
- C. Idaho Examples
- D. Sources of Nutrients
- E. Controlling Nutrients and Sediments
- F. Fresh Water Pollution
- G. Salt Water Pollution
- H. Water Quality Measurements

Learning Objectives:

When you are finished with this unit you should be able to:

- Describe two categories of aquatic plants and contrast how the balance between them is altered by the nutrient content of the water.
- 2. Describe the process of eutrophication.
- 3. Describe the Chesapeake Bay story.
- 4. Contrast methods of eutrophication control.
- 5. Identify the major sources of sediment and discuss control strategies for each source.
- 6. Identify the major sources of nutrients leading to eutrophication and discuss control strategies for each source.

Terms You Should Know:

- * Pollution, Pollutants
- ♦ BMPs
- * Eutrophication

- Benthic plants
- Phytoplankton
- Submerged aquatic vegetation (SAV)
- Emergent vegetation
- * Oligotrophic
- * Biochemical Oxygen Demand (BOD)
- Cultural eutrophication
- Aeration
- Sediments
- Advanced sewage treatment
- Sediment trap

Reading Assignment:

Brennan and Withgott: Chapter 15; pages 420-430. 1

16. SURFACE WATER POLLUTION

THE PROCESS OF EUTROPHICATION

- **EUTROPHICATION**—process whereby a body of water becomes nutrient rich, supporting abundant growth of algae and/or other aquatic plants at the surface. Deep water becomes oxygen depleted.
 - Natural process that takes place over thousands of years
 - •

A. Two Kinds of Aquatic Plants

Two distinct life forms of aquatic plants:

- 1.
- 2.

1. BENTHIC PLANTS:

- •
- Can be submerged (SAV) or emerged vegetation:

- These plants thrive in nutrient poor water
- •
- SAVs need clear water for enough light for photosynthesis
- The depth to which adequate light can penetrate is called the EUPHOTIC ZONE
 - in clear water:
 - in murky water:

2. PHYTOPLANKTON:

- Numerous species of algae; microscopic cells or threads
- •
- Tolerate turbid water; actually cause turbidity
- •
- Pea green water; scum
- Reach high densities in nutrient-rich waters
- •

B. Upsetting the Balance by Nutrient Enrichment

- a. Oligotrophic Conditions
 - •
 - Most ecosystems untouched by man
 - —
 - benthic plants thrive to great depth (30 to 60 feet)
 - benthic plants aid in maintaining dissolved O₂ in deep water
 - Nutrient poor but O₂ rich from top to bottom

- b. Eutrophic Conditions
 - •
 - Nutrient enrichment:
 - rapid growth and multiplication of phytoplankton
 - —
 - Turbidity shades out benthic plants
 - -
 - Sediments also create turbidity
 - •
 - •

The cycle:

- phytoplankton rapidly multiply
- _
- _
- decomposers consume O₂ to break down dead materials
- _
- _
- Organic matter additions to water will deplete O₂
 - -

 - _

• Measure health of system:

BOD-biological oxygen demand

BOD to measure what $\mathrm{O_2}$ is demanded to break substances down

if BOD > dissolved O_2 in water

- c. Natural vs Cultural Eutrophication
 - Oligotrophic lakes get occasional bursts of phytoplankton growth—algal blooms
 - happens over 1,000s of years
 - _
 - If humans speed up the process, called CULTURAL EUTROPHICATION

EXAMPLE: Lake Erie

- d. Combatting Eutrophication
 - 2 approaches:
 - 1.

2.

1. Attacking the symptoms:

- Chemical treatments:
 - herbicides to suppress the growth of unwanted plants
- Aeration:
 - mechanical aeration to add O_2 and reduce fishkills
 - _

Harvesting algae:

-

- feasible only in small water bodies

Controlling inputs:

- Decrease the inputs of nutrients
- •
- e. Chesapeake Bay
 - North America's largest estuary
 - Prior to 1970 it was North America's most productive estuary
 - 1970s seagrasses in the major rivers began to die; dramatic by 1975
 - _
 - Populations of organisms which depended on seagrasses declined
 - _

 - Bottom waters in deep areas of the bay became depleted of O₂
 - —

Why did this happen?

TURBIDITY (murky or cloudy water)

- cut off light required for photosynthesis \rightarrow seagrass died

_

• Bay fell victim to EUTROPHICATION

C. Idaho Examples

• Middle Snake

Problems: algal blooms

_

- _
- Lake Coeur d'Alene

Problems starting to occur

Enrichment from:

- sediments from cropland
- —
- sediments from forest land
- sediments from construction sites along shore
- _
- _
- lawns along the shore --- nutrients
- _

CONTROLLING EUTROPHICATION

- First:
- Second, develop a control strategy for each source

D. Sources of Nutrients

Agriculture:

•

7

- Leaching of fertilizers applied to crops
- •

Urban:

- •
- Leaching of fertilizers applied to lawns and gardens (compost)
- •

Sewage Effluents:

- Discharge from centralized sewage treatment plants
- •
- •

E. Controlling Nutrients and Sediments

What to do is obvious!!!

- a. BMPs on farms, lawns, and gardens
 - keep ground covered
 - prevent erosion
- b. Sediment Control on Construction and Mining Sites
 - —
 - -
- c. Preservation of Wetlands
- d. Banning Phosphate Detergents
 - Idaho-ban in northern Idaho
- e. Advanced Sewage Treatment

F. Fresh Water Pollution

Types of pollutants

1. Nutrients —

 \checkmark

 \checkmark

- 2. Pathogens / Diseases
 - ✓ makes water unsafe for swimming

 \checkmark

- 3. Toxic Chemicals
 - \checkmark

 - \checkmark
 - \checkmark
- 4. Sediments
 - \checkmark
 - ✓ mining, forestry, agriculture
- 5. Thermal Pollution
 - \checkmark

 \checkmark

G. Salt Water Pollution

Nutrient Pollution = HYPOXIA

- •
- Caused by nutrient pollution (eutrophication)
- •

- Nutrients exit farmland and flow down Mississippi River
- •

•

H. Water Quality Measurements

- 1. Biological Measurements
 - \checkmark presence of fecal coliforms
 - \checkmark
 - \checkmark
 - \checkmark
- 2. Chemical Measurements
 - \checkmark
 - \checkmark
 - $\checkmark~$ dissolved oxygen content
- 3. Physical Measurements
 - \checkmark
 - \checkmark
 - v
 - \checkmark