
Environmental Science 101

Waste

Lecture Outline:

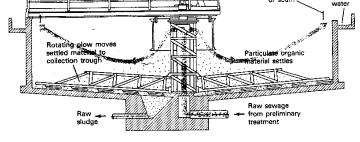
17. SEWAGE DISPOSAL

- A. Sewage Handling
- B. Raw Sewage
- C. Wastewater Treatment Steps
- D. Individual Septic Systems
- E. Taking Stock

Learning Objectives:

When you are finished with this unit you should be able to:

- 1. Describe the health hazards associated with untreated sewage.
- 2. List and describe the four major categories of pollutants in raw sewage.
- 3. Describe the processes of preliminary, primary, secondary and tertiary sewage treatment.
- 4. Outline possible methods for disinfecting sewage treatment effluent.
- 5. Cite the goals and accomplishments of The Clean Water Act.


Terms You Should Know:

- ♦ Pathogens
- Storm drains
- Sanitary sewers
- Particulate material
- Colloidal material
- Preliminary treatment
- Bar screen
- Primary treatment
- Raw sludge
- Secondary
- treatment
- Biological treatment
- * Activated sludge system
- Disinfection

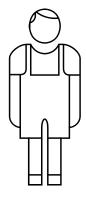
- Chlorinated hydrocarbons
- Tertiary (advanced) treatment
- ♦ Wetland systems
- Anaerobic digestion
- Sludge digester
- Biogas
- ✤ Treated sludge
- Septic system
- Clean Water Act of 1972

Clarified

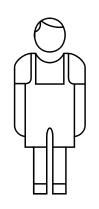
Cross section of primary clarifier.

Reading Assignment:

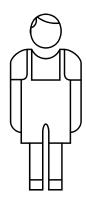
Brennan and Withgott: Chapter 15; pages 426-428. Fall 2012


17. SEWAGE DISPOSAL

A. SEWAGE HANDLING


sewage =

sewage treatment =


- Government prefers latter terms, feeling they are more acceptable to the public
- 1. Health Hazard of Untreated Sewage
 - Untreated sewage is a major health hazard—contains PATHOGENS
 - Vector in the spread of many diseases:
 - typhoid fever
 - -
 - salmonella infections
 - -
 - infectious hepatitis
 - -
 - giardiasis
 - -
 - flatworms

sick person

well person

sick person

- When host populations are sparse:
 - -
 - because contamination levels are low
- When host population is high:
 - -
 - because contamination levels are high
- Before the connection between sewage and disease was made, epidemics were common in most major cities
- Where sewage is not treated, there is still the potential for major epidemics
- •
- 2. Historical Background
 - Prior to 1900 common to use outhouses; these often contaminated drinking water
 - Moved to flush toilets connected to sewers
 - -
 - _
 - wastewater treatment initiated to clean up polluted rivers
 - First treatment plants built in USA about 1900
 - ٠
 - Because of peak flows associated with storm events most cities moved to:

- Situation under control in developed countries
 - A mess in the Third World
 - \checkmark many kids play in open sewers
 - ✓ ideal for disease transmission
 - \checkmark some degree of immunity due to repeated exposure for locals
 - ✓ visitors do not have immunity

B. RAW SEWAGE

1. What is Raw Sewage?

Raw sewage: 99.9% water; 0.1% waste

- if storm water added, even more dilution
- The waste can be divided into four distinct categories:
 - 1. DEBRIS AND GRIT:

debris —

grit—

- 2. PARTICULATE ORGANIC MATERIAL:
 - visible OM (from food wastes)
 - -

- microbes that have begun to digest waste

-

- 3. COLLOIDAL AND DISSOLVED ORGANIC MATERIAL:
 - same sources as in particulate organic material—but smaller in size
 - will not settle in still water
- 4. DISSOLVED INORGANIC MATERIAL:
 - nutrients; N, P, K from excretory wastes
 - -

In addition to the 4 categories:

-

C. WASTEWATER TREATMENT STEPS

• A sewage treatment plant should remove all four types of pollutants for complete treatment:

debris + grit \rightarrow particulate OM \rightarrow coll & diss OM \rightarrow diss inorganic \rightarrow then chlorinate \rightarrow

- Preliminary and primary treatments are physical steps
- •
- In USA most cities now have secondary treatment; increasing numbers are installing tertiary treatment
- a. Preliminary Treatment:

Removal of debris and grit

- Removed first because it can damage or clog pumps
- RAW SEWAGE moves through a BAR SCREEN (bars 1 inch apart)
 - debris raked off and incinerated
 - then sewage flows through a GRIT SETTLING TANK;
 - _
 - -
- b. Primary Treatment:

Removal of particulate organic material (OM)

- Water flows through large tanks called PRIMARY CLARIFIERS
 - -
 - 30 to 50% of OM settles out

removed

- fatty and oily materials float to top

skimmed off

• The settled OM and fatty materials called RAW SLUDGE

c. Secondary Treatment:

Removal of colloidal and dissolved OM

- Also called BIOLOGICAL TREATMENT
- Uses organisms, decomposers to break down colloids to $\rm CO_{2}$ and $\rm H_{2}O$
 - need O_2 rich system

Secondary systems:

1.

2.

- 1. Fixed film systems:
 - also called attached growth
 - _
 - biomass grows on media and sewage passes over it
 - 2. Suspended growth systems:
 - activated sludge system
 - for large cities
- d. Disinfection
 - Kill pathogens prior to discharge
 - Chlorine gas is common; but has problems:
 - _

7

- Newer agents:
 - -
- In 1972 5% of US sewage raw
 - 25% only primary treatment
- Clean Water Act \rightarrow bring all treatment up to secondary level
- But inorganic nutrients alone will cause eutrophication!! Need tertiary treatment!
- e. Tertiary or Advanced Treatment

Removal of dissolved inorganic materials

- Where water is scarce \rightarrow
- P removal if you want to prevent eutrophication
 - _

_

- N removal under many circumstances
 - -

1. Tertiary Treatment Alternatives

Irrigation:

- -

-

- natural filter

-

- climate may restrict
- artificial wetlands are best bet
- 2. Sludge-Treatment Options
 - For dealing with RAW SLUDGE from primary treatment
 - Consider both TREATMENT and DISPOSAL
 - Common to press out water; incinerate or landfill the solids (or maybe dump in the ocean)
 - The RAW SLUDGE can be converted to HUMUS—that is rich in nutrients—FERTILIZER!!

Conversion to humus:

- air →
- + air →

D. INDIVIDUAL SEPTIC SYSTEMS

• Millions of homes in rural and suburban areas have septic systems

• Waste water flows into septic tank

-

- water containing colloidal OM + dissolved nutrients flow into drain field and gradually percolate into soil
- septic tank should be pumped out every 2 to 3 years

Septic tank problems:

- soil too clayey –
- water table too high
- Encouragement of conversion from septic tanks to sewers:
 - -

E. TAKING STOCK

- 1. Progress
 - •
 - Clean Water Act (CWA) Goals:
 - 1. Keep aquatic ecosystems fit for their normal biota
 - 2.
 - CWA sets goals and schedules for cleanup
 - provides federal money for sewers and upgrading sewer plants

- Today many water bodies are cleaner today than in 1960s and early 1970s
- •

_

- Still hear of beaches closed to swimming—*E. coli*.
- Idaho funds sewers with Idaho Water Pollution Control Fund (source of funds is the inheritance tax)