Environmental Science 101

Population Issues

Lecture Outline:

- 4. FEEDING THE POPULATION
 - A. Food Systems
 - B. USA Agriculture
 - C. The Green Revolution
 - D. Subsistence Agriculture
 - E. Animal Production
 - F. The Oceans / Aquaculture
 - G. Biotechnology
 - H. Food Prospects
 - I. Food Distribution and Trade
 - J. Hunger, Malnutrition, and Famine

Learning Objectives:

When you are finished with this unit you should be able to:

- 1. Describe industrialized agriculture in the USA.
- 2. Describe the origins and impact of the Green Revolution.
- 3. List the distinctive features of subsistence agriculture.
- 4. Describe the food potential of the world's oceans.
- 5. Describe the pros and cons of transgenic crops.
- 6. Evaluate the prospects for increasing food production in the future.
- 7. Analyze global patterns of food trade, and explore the consequences of those patterns.
- 8. Define and describe the extent of hunger, malnutrition, and undernutrition in the world.

Terms You Should Know:

Industrial agriculture

Genetic engineering

Genetically Modified

(GM) Organisms

Overgrazing

- Green Revolution
- * Subsistence farmers * Traditional agriculture
- Shifting cultivation
- Swidden
- Malnutrition
- * Undernutrition
- Absolute poverty
- * Famine
- Organic farming
- * Intercropping
- * Aquaculture
- Siotechnology
- Transgenic crops
- Hunger

Reading Assignment:

Brennan and Withgott: Chapter 10; pages 251-279.

Fall 2012

4. FEEDING THE POPULATION

A. FOOD SYSTEMS

- There are three traditional food systems
 - 1.
 - 2.
 - 3.
- All three food systems have expanded greatly since 1950 to meet human demands
- There are two major types of agricultural systems:
- 1.
- 2.
- 1. INDUSTRIALIZED AGRICULTURE
 - high input
 - —
 - practiced on about 25% of cropland
 - —

2. TRADITIONAL AGRICULTURE

Two types (low input):

- 1. Traditional subsistence
 - ✓
 - ✓
- 2. Traditional intensive
 - ✓

✓

B. USA AGRICULTURE

- 2% of US work force produce enough food for 375,000,000 people
- Characteristics of Modern Agriculture in the USA
 - Machinery Intensive

 \checkmark

- Chemical Intensive
 - \checkmark
 - \checkmark
- Monocultures
 - √ √
 - \checkmark

C. THE GREEN REVOLUTION

- Increases in cereal production at a faster rate than population growth
- •

• 3 legged stool:

• Farmers must purchase all three

PROBLEMS:

- Most yield potential already reached; yield plateaus
- •
- Benefits large landholders (displaces small farms)
- •
- No impact on subsistence agriculture

D. SUBSISTENCE AGRICULTURE

SUBSISTENCE FARMERS:

- Live off small parcels of land that provide food, maybe some cash
- •
- _
- •
- Farmers often ignored by world bank and own government because:
 - _
 - do not riot in capital cities

a. Shifting Cultivation (SWIDDEN)

Shifting cultivation is the practice of:

- Allowing a natural cover to regenerate the productivity of the soil
- About 30% of the world's exploitable soils are farmed using shifting cultivation
- •
- There are two types of agricultural systems:
 - 1. Land rotation-which have permanent settlements but the farm land is rotated

2. Shifting cultivation—where settlements shift

• Shifting cultivation can occur under both forest conditions and savannas

EXAMPLE: Forest system

Small fields cleared:

- Clearing—
- Planting—
- •

corn (C)	cassava (V)	
rice (R)	yams (Y)	
beans (B)	plantain (P)	

- •
- After harvest (usually two or three crops) the field is abandoned to forest
- Ideally, 15 to 50 years of forest growth before the land is again cleared for agriculture

E. ANIMAL PRODUCTION

Livestock:

- sheep
- goats
- cattle
- buffalo
- poultry
- 25% of world's land area is devoted to feeding animals (compared to 11% of surface in cropland)
- In USA, 70% of grain feeds animals
- •

- Meat production could double in the next 30 years
- Meat production today:
- _

_

Food Choices = Energy Choices

Feed input to produce meat output:

Input (kg)	Output (kg)	
20.0		
7.3		
4.5		
2.8		
1.1		

• Both rangeland and feedlot meat production have environmental problems

FEEDLOT PROBLEMS:

- •
- •

RANGELAND PROBLEMS:

•

OVERGRAZING — too many animals graze for too long and exceed the carrying capacity of a grassland area

RESULTS OF OVERGRAZING

- •
- •
- Soil compaction
- Promotion of woody shrub invasions
- •

UNSATISFACTORY RANGELANDS

Country	% Unsatisfactory*
USA	
South America	
Africa	
Sahal	

* Unsatisfactory is considered rangeland classified as in fair or poor condition.

F. THE OCEANS / AQUACULTURE

- Estimated limit of ocean catch—
- Current average catch—
- •
- Since 1989 global catch of fish, crustaceans, and mollusks has fallen 5% and stagnated
- •
- Fish catch has fallen in 13 of the major 15 marine fishing regions of the world

11

- 1. Fish as Food Supplies
 - Traditionally fish have been considered poor man's protein \longrightarrow
 - Fish supplies have stagnated
 - ٠

- •
- Need better fishing management:
 - -
 - _
 - -

- Aquaculture is
- Based on:

ocean stagnation + projected aquaculture growth

- —
- Based on price:
 - fish product consumption will
 - fish product consumption will

Benefits of Aquaculture:

- When conducted on a small scale it results in a reliable protein source
- •
- •
- Reduces the by-catch (unintended catch of non-target organisms) in the ocean
- •
- Can be a very energy efficient food source (1,000X compared to ocean fish)

Negative Impacts of Aquaculture:

- Dense concentrations of fish increases incidence of disease \rightarrow reduces food security
- Animal waste is produced in excessive amounts

- In LDCs:
- If farmed fish escape into ecosystem they may interbreed with natives (salmon)

-

—

G. BIOTECHNOLOGY

- **GENETIC ENGINEERING** any process whereby scientists directly manipulate an organism's genetic material in the lab by adding, deleting, or changing segments of its DNA
- **GENETICALLY MODIFIED (GM) ORGANISMS** organisms that have been genetically engineered using a technique called recombinant DNA technology
- **RECOMBINANT DNA** DNA that has been patched together from the DNA of multiple organisms
 - •
 - •
 - Basically a breeding technique that transfers genetic information across a species boundary
 - i.e., splicing a bacterium gene into a petunia

GM Foods — The Future?

- In 35 years GM foods have gone from an idea to big business
- Now we have designer plants and animals
- New traits:

GM Foods — The Impact

In USA (2010):

- 74% of corn
- _

In World (2010):

- 60% of soybeans
- _
- 20% of canola
- —

GM Crops — Acreage

Year	Acres
1996	
1998	
2001	
2005	
2010	

GM Crops — Where

- In 2010, 18 nations grew GM crops
- 96% of production in:
 - —
 - _

 - -

 - -
- Major exporters →

GM Debate

• Science standpoint

16

- _
- -
- Ethical standpoint
 - tinkering with food supply may be morally wrong
 - -
- _

USA:

•

LDCs:

•

Europe:

•

PROS —

- •
- -
- •

CONS -

- •
- .
- -
- •
- •

Two cases:

- 1. Butterflies on corn in USA
- 2. Yellow rice for southeast Asia

H. FOOD PROSPECTS

"Green revolution will buy time for the world to come to its population senses"—Norman Borlaug

- Prospects are not very good!
- Let the data speak for itself:

Year	Total Grainland	Per Capita Grainland	Per Capita Change by Decade	
	million ha	ha	%	
1950	593	0.23		
1970	673	0.18	-23	
1990	720	0.14	-27	
2000	720	0.12	-15 (-30)	

World grainland, total and per capita - from Lester Brown, State of the World

World grainland, from Lester Brown, State of the World

Year	Total Production	Per Capita Production	Per Capita Change by Decade	
	million tons		%	
1950	631	246		
1970	1,103	296	+19	
1990	1,684	316	+ 7	
2000	1,842	295	- 7 (-14)	

I. FOOD DISTRIBUTION AND TRADE

- Historical tradition of self sufficiency
- •
- Food sufficiency is presently possible at the global level; but not on a country-bycountry basis

J. HUNGER, MALNUTRITION, AND FAMINE

HUNGER—lack of basic food required for energy and meeting nutritional needs

MALNUTRITION—lack of essential nutrients (amino acids, vitamins & minerals)

- •
- •
- 25% of the world's population suffer from effects of hunger and/or malnutrition
- a. Cause of Hunger
 - •

ABSOLUTE POVERTY—lack of sufficient income in cash or kind to meet the most basic biological needs for

- •
- •
- •

about 1,200,000,000 people

b. Famine

FAMINE—severe shortage of food accompanied by a significant increase in death rate

Two major causes:

- 1.
- 2.

Historically:

- Drought caused famines from 1970 to 2010 in the Sahal of Africa
- Warfare in
- Food aid is used to relieve famines

PROBLEMS

- EROSION
- •
- •
- OVER POPULATION
- •
- LACK OF WATER / DROUGHT
- •
- •

Ethical questions:

- 1. Should we give only to needy countries that have a chance of feeding themselves in the future?
- 2. Is it right for the more affluent in the world to eat meat raised on grain when we know that it is an inefficient way to convert crops to food for humans?
- 3. Should the US continue to keep agricultural lands out of production when food supplies could be given away?
- 4. Prices? Undercut markets...subsidies to farmers...cheap food policy