Environmental Science 101

Energy

Lecture Outline:

8. RENEWABLE ENERGY RESOURCES

- A. Improving Energy Efficiency
 - 1. Doing More with Less
 - 2. Case Study 1
 - 3. Case Study 2
 - 4. Reducing Energy Waste
 - 5. Saving Energy
 - 6. A Look at USA in 2008 and 2050
- B. Geothermal Energy
- C. Hydroelectric Energy
- D. Ocean Energy Sources
- E. Biomass Energy

Terms You Should Know:

- Hydroelectric energy
- * Biomass energy
- * Geothermal energy
- ♦ Gasohol
- Turbines
- ♦ Biofuel
- Conservation
- Cogeneration
- ✤ Energy Efficiency
- Penstocks

Learning Objectives:

When you are finished with this unit you should be able to:

- Describe what can be done to improve energy efficiency in the USA.
- 2. List ways that you as an individual can save energy.
- 3. Describe the pros and cons of hydroelectric energy production.
- 4. List the pros and cons of tidal, geothermal, and biomass energy.
- 5. Rank renewable energy sources from greatest to least potential looking 50 years into the future. Justify your ranking.

Reading Assignment:

Brennan and Withgott: Chapter 20; pages 561-588. Fall 2012

8. RENEWABLE ENERGY RESOURCES

A. IMPROVING ENERGY EFFICIENCY

- 1. Doing More with Less
 - 84% of all commercial energy used in the USA is wasted
 - _
 - Energy efficiency

ENERGY EFFICIENCY—the percentage of total energy input that does useful work

• Increasing energy efficiency—cars

cars	—	MPG	
1975			
1988			
1992	_		
1994			
2001			
2004	_		
1 mpg on US cars =			

2. CASE STUDY 1

Compact Fluorescent Lights (CFLs) vs. Incandescent Light Bulbs

- Efficiency:
 - incandescent lighting
 - fluorescent lighting

• CFL Sales:

1988 1992 1996

2004

- •
- CFLs last 10X as long as incandescents
- •

_

- In 1999 incandescents out sold CFLs by 25:1
- CFL technology continues to improve
 - _
- 3. CASE STUDY 2: THE CAR

OPTIONS:

• Internal Combustion Engine

10% Efficiency

3

•

OPTION A: Internal Combustion Engine

DO NOTHING! — keep internal combustion engine

- Fading oil reserves
- •

OPTION B: Hybrid Car

- Consists of:
 - _
 - small battery to provide energy for acceleration and hill climbing
- Hybrid Cars

Toyota Prius

- on sale in the USA for 12 years
- -
- _

Hybrid availability in the USA

- _
- _
- Lexus CT200h (42 mpg)
- _
- Honda, Lincoln, Hyundai, and Kia all sell hybrids

OPTION C: Hydrogen Fuel Cells

- —
- lower CO_2 emissions
- _

- 4. Benefits of reducing energy waste:
 - Making non-renewable fuels last longer
 - •
 - Decreasing dependence on oil imports
 - Lessening need for military intervention in the Middle East (oil interests)
 - •
 - •
 - - USA—
 - Japan—
- 5. Saving Energy

CONSERVATION—(1) using only what we need, and (2) using it efficiently

• Roadblocks to energy conservation:

_

- federal programs subsidize fossil fuels

oil cost = \$36 per barrel

real oil cost =

6.a A Look at USA in 2008

Use of renewable energy in the USA today (2008):

- % of our energy needs; split as follows:
 - % Hydropower
 - % Biomass energy
 - % Geothermal
 - % Solar
 - % Wind

6.b A Look at USA in 2050

6.c Current Renewable Options and Potential

Option	Status	Price
Geothermal		
Wind		
Solar – Thermal		
Solar – Photovoltaic		
Ocean Wave Power		

B. GEOTHERMAL ENERGY

• Using internal heat from the Earth

GEOTHERMAL ENERGY — heat from the Earth's mantle transferred to underground concentrations of dry steam, wet steam, or hot water

•

- 20 countries now use some geothermal energy
 - USA produces 44% of the world's geothermal power
 - Iceland-heats capital city
- Wells can be drilled to extract the energy

PROS:

- -
- ____
- _
- can be used to turn turbines
- use all the time

CONS:

- —
- can degrade local environment:

minerals, salts, toxic metals, hydrogen sulfide gas

C. HYDROELECTRIC ENERGY

- Rely on dams; environmental costs
- Stored reservoir water flows through *Penstock* (pipes) at controlled rates and turn turbines to produce electricity
- In 1925 hydropower generated 40% of the world's electricity
- Today—World
 - -
- Today—USA
 - ____
- In USA most of potential hydroelectric energy is already developed
 - few new large dams will be built

- Hydropower is renewable, but adversely impacts:
 - -
 - -
 - -
 - takes fertile land out of production

PROS:

- -
- _
- well developed technology

CONS:

- _
- - environmental impacts

D. OCEAN ENERGY SOURCES

- •
- •

1. Harnessing heat

- Ocean's sun-warmed surface temperature is higher than deep water
- Use temperature gradient to capture energy

- 2. Harnessing Motion
 - a. Tides
 - Tides come in and go out twice each day
 - •
 - Potential sites:

_

- -
- b. Wave Motion
- Harness the motion of wind-driven waves
- •
- •

E. BIOMASS ENERGY

- 1. Definitions
 - Organic substances produced by recent photosynthesis
 - BURNING:
 - wood alcohol
 - garbage
 oil seed crops
 - agricultural wastes

DECOMPOSITION:

- -
- Can be used to produce electricity
- •
- 1. Pacific Northwest Biomass Energy Examples
 - a. Wood Chips
 - _
 - b. Biodiesel
 - -
 - -
 - _
 - c. Energy Crops
 - -
 - -
 - d. Waste to Energy
 - Spokane's Waste-to-Energy Plant
 - ✓ ✓
 - e. Wood Stoves
 - _
 - -

- f. Gasohol
 - —
 - gasohol is a gasoline-ethanol mixture
 - _
- 2. National Global Potential / Use
 - •
 - In LDCs biomass energy is 50% of energy use
 - _
- 3. Renewable but Sustainable?
 - All biomass energy sources have environmental costs!
 - _

 - _

 - -
 - _