<table>
<thead>
<tr>
<th>Assignment number</th>
<th>due date</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Friday, Sept. 2</td>
<td>1.7, 1.16, 1.19, 1.20, 1.29, 1.30</td>
</tr>
<tr>
<td>2</td>
<td>Friday, Sept. 9</td>
<td>1.43, 2.4, 2.5</td>
</tr>
<tr>
<td>3</td>
<td>Friday, Sept. 16</td>
<td>2.16, 2.22, 2.25, 2.30, 2.33, 2.40</td>
</tr>
<tr>
<td>4</td>
<td>Friday, Sept. 23</td>
<td>3.29, 3.31, 3.42, 3.47</td>
</tr>
<tr>
<td>5</td>
<td>Friday, Sept. 30</td>
<td>3.50, 3.51, 3.53, 4.7, 4.8</td>
</tr>
<tr>
<td>6</td>
<td>Friday, Oct. 7</td>
<td>4.21, 4.22, 4.28</td>
</tr>
<tr>
<td>7</td>
<td>Friday, Oct. 21</td>
<td>5.11, 5.18, 5.22</td>
</tr>
<tr>
<td>8</td>
<td>Friday, Oct. 28</td>
<td>5.26, 5.34, 6.5, 6.11</td>
</tr>
<tr>
<td>9</td>
<td>Friday, Nov. 4</td>
<td>6.24, 6.44, 6.48, 6.52</td>
</tr>
<tr>
<td>10</td>
<td>Friday, Nov. 11</td>
<td>6.59, 7.2, 7.8, 7.23</td>
</tr>
<tr>
<td>11</td>
<td>Friday, Nov. 18</td>
<td>7.45, 7.46, 7.47</td>
</tr>
<tr>
<td>12</td>
<td>Friday, Dec. 2</td>
<td>8.5, 8.15, 8.28</td>
</tr>
</tbody>
</table>

Contents

Homework grading scheme

Hints

Assignment 2 ... 2
Assignment 5 ... 2
Assignment 6 ... 2
Assignment 8 ... 2

Suggested solutions to selected problems

Assignment 1 ... 3
Assignment 2 ... 5
Assignment 3 ... 6
Assignment 4 ... 7
Assignment 5 ... 9
Assignment 6 ... 11
Assignment 8 ... 15
Assignment 11 ... 17

Homework grading scheme

Each problem is worth ten points. Points for a problem are assessed as follows:
Hints

Assignment 2

1.43. If \(f = \sum_{i=0}^{\infty} f_i, g = \sum_{i=0}^{\infty} g_i \in R[[X_1, \ldots, X_n]] \) then \(fg = \sum_{i=0}^{\infty}(\sum_{j=0}^{i} f_j g_{i-j}) \) (see Sharp p. 11). Hence, \(fg = 1 \) if and only if

\[
\begin{align*}
1 &= f_0 g_0, \\
0 &= f_0 g_1 + f_1 g_0, \\
0 &= f_0 g_2 + f_1 g_1 + f_2 g_0, \\
&\vdots
\end{align*}
\]

2.5 Use the binomial theorem, which is valid in any commutative ring \(R \): If \(x, y \in R \), and \(n \in \mathbb{N} \), then

\[
(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}, \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}.
\]

2.22 It may be useful to use the (total) degree function \(\deg : K[X_1, X_2] - 0 \to \mathbb{N} \) (see p. 9 of Sharp). This function satisfies \(\deg(pq) = \deg(p) + \deg(q) \) for non-zero elements \(p \) and \(q \) of \(K[X_1, X_2] \).

Assignment 5

For Exercise 3.50 and Exercise 3.51 consider using Corollary 3.49. For Exercise 4.7 first read and understand Exercise 2.46. For Exercise 4.8 consider using Exercise 4.7.

Assignment 6

For Exercise 4.28, prove that the ideal \((X^3, XY, Y^n)\) is primary by finding a maximal ideal \(M \) and \(k \in \mathbb{N} \) such that

\[
M^k \subseteq (X^3, XY, Y^n) \subseteq M,
\]

take radicals, and apply Proposition 4.9.

Assignment 8

For Exercise 5.34, assume that \(R \) does admit a non-zero nilpotent element \(x \) and obtain a contradiction via the following idea. Consider \(I = \{ r \in R : rx = 0 \} \). Then \(I = (0 : x) \), and \(I \) is thus
an ideal of R. If $I = R$, then $1 \cdot x = 0$, which is a contradiction. Assume that $I \subsetneq R$, so that I is a proper ideal. Since I is a proper ideal, I is included inside a maximal ideal M. Since M is a maximal ideal, M is a prime ideal. Consider R_M and the image $x/1$ in R_M of x under the natural map. The element $x/1$ is nilpotent. By the hypothesis of this exercise we must have $x/1 = 0/1$. Now obtain the final contradiction.

Suggested solutions to selected problems

Assignment 1

1.16 Let R' be a commutative ring, and let $\xi_1, \ldots, \xi_n \in R'$ be algebraically independent over the subring R of R'. Let T be a commutative R-algebra with structural ring homomorphism $f : R \rightarrow T$ and let $\alpha_1, \ldots, \alpha_n \in T$. Show that there is exactly one ring homomorphism

$$g : R[\xi_1, \ldots, x_n] \rightarrow T$$

which extends f (that is, is such that $g|_R = f$) and is such that $g(\xi_i) = \alpha_i$ for all $i = 1, \ldots, n$.

Suggest solution: We begin with some notation. For $\lambda = (i_1, \ldots, i_n) \in \mathbb{N}_0^n$ we will write

$$\xi^\lambda = \xi_{i_1}^{i_1} \cdots \xi_{i_n}^{i_n}.$$

With this notation every element p of $R[\xi_1, \ldots, \xi_n]$ can be written uniquely in the form

$$p = \sum_{\lambda \in \mathbb{N}_0^n} r_\lambda \xi^\lambda$$

where $r_\lambda \in R$ for $\lambda \in \mathbb{N}_0^n$ and $r_\lambda = 0$ for all but finitely many $\lambda \in \mathbb{N}_0^n$ (see 1.14). If

$$q = \sum_{\lambda \in \mathbb{N}_0^n} s_\lambda \xi^\lambda$$

is another element of $R[\xi_1, \ldots, \xi_n]$, then we have

$$p + q = \sum_{\lambda \in \mathbb{N}_0^n} (r_\lambda + s_\lambda) \xi^\lambda,$$

$$pg = \sum_{\lambda \in \mathbb{N}_0^n} \left(\sum_{\begin{subarray}{c} \lambda_1, \lambda_2 \in \mathbb{N}_0^n, \\ \lambda_1 + \lambda_2 = \lambda \end{subarray}} r_{\lambda_1} s_{\lambda_2} \right) \xi^\lambda.$$
by

\[g(p) = \sum_{\lambda \in \mathbb{N}_0^n} f(r_{\lambda}) \alpha^\lambda \]

for \(p \) as above; here, for \(\lambda = (i_1, \ldots, i_n) \in \mathbb{N}_0^n \) we define \(\alpha^\lambda = \alpha_1^{i_1} \cdots \alpha_n^{i_n} \). With \(p \) and \(q \) as above, and using that \(f \) is a ring homomorphism, we have:

\[g(p + q) = g\left(\sum_{\lambda \in \mathbb{N}_0^n} (r_{\lambda} + s_{\lambda}) \xi^\lambda \right) = \sum_{\lambda \in \mathbb{N}_0^n} f(r_{\lambda} + s_{\lambda}) \alpha^\lambda = \sum_{\lambda \in \mathbb{N}_0^n} f(r_{\lambda}) \alpha^\lambda + \sum_{\lambda \in \mathbb{N}_0^n} f(s_{\lambda}) \alpha^\lambda = g(p) + g(q). \]

And:

\[g(pq) = g\left(\sum_{\lambda \in \mathbb{N}_0^n} \left(\sum_{\lambda_1, \lambda_2 \in \mathbb{N}_0^n, \lambda_1 + \lambda_2 = \lambda} r_{\lambda_1} s_{\lambda_2} \right) \xi^\lambda \right) = \sum_{\lambda \in \mathbb{N}_0^n} f\left(\sum_{\lambda_1, \lambda_2 \in \mathbb{N}_0^n, \lambda_1 + \lambda_2 = \lambda} r_{\lambda_1} s_{\lambda_2} \right) \alpha^\lambda = \left(\sum_{\lambda \in \mathbb{N}_0^n} f(r_{\lambda}) \alpha^\lambda \right) \left(\sum_{\lambda \in \mathbb{N}_0^n} f(s_{\lambda}) \alpha^\lambda \right) = g(p)g(q). \]

It is clear that \(g(1) = 1 \). It follows that \(g \) is a ring homomorphism. It is also clear that \(g \) extends \(f \). Finally, to prove that \(g \) has the required uniqueness property, assume that \(h : R[\xi_1, \ldots, \xi_n] \to T \) is another right homomorphism such that \(h|_R = f \) and \(h(\xi_i) = \alpha_i \) for all \(i = 1, \ldots, n \). Let \(p \) be as above. We then have

\[h(p) = h\left(\sum_{\lambda \in \mathbb{N}_0^n} r_{\lambda} \xi^\lambda \right) = \sum_{\lambda \in \mathbb{N}_0^n} h(r_{\lambda}) h(\xi^\lambda) = \sum_{\lambda \in \mathbb{N}_0^n} f(r_{\lambda}) \alpha^\lambda = g(p). \]
It follows that $h = g$.

1.19 Let K be an infinite field, let Λ be a finite subset of K, and let $f \in K[X_1, \ldots, X_n]$, the ring of polynomials over K in the indeterminates X_1, \ldots, X_n. Suppose that $f \neq 0$. Show that there exist infinitely many choices of $(\alpha_1, \ldots, \alpha_n) \in (K - \Lambda)^n$ for which $f(\alpha_1, \ldots, \alpha_n) \neq 0$.

Suggest solution: We prove this by induction on n. The case $n = 1$ is clear because a non-zero polynomial in one variable over K has finitely many distinct roots and $K - \Lambda$ is infinite. Assume that $n > 1$ and that the statement holds for $n - 1$; we will prove that it holds for n. There exists a non-negative integer N such that $f(X_1, \ldots, X_n) = \sum_{k=0}^{N} f_k(X_1, \ldots, X_{n-1}) X_n^k$ where $f_k(X_1, \ldots, X_{n-1}) \in K[X_1, \ldots, X_{n-1}]$ for $k = 1, \ldots, N$, and $f_N(X_1, \ldots, X_{n-1})$ is non-zero. By the induction hypothesis, there exists $(\alpha_1, \ldots, \alpha_{n-1}) \in (K - \Lambda)^{n-1}$ such that $f_N(\alpha_1, \ldots, \alpha_{n-1}) \neq 0$. Consider the polynomial

$$g(X_n) = f(\alpha_1, \ldots, \alpha_{n-1}, X_n) = \sum_{k=0}^{N} f_k(\alpha_1, \ldots, \alpha_{n-1}) X_n^k$$

in the variable X_n. This polynomial is non-zero because $f_N(\alpha_1, \ldots, \alpha_{n-1}) \neq 0$. By the case $n = 1$, there exist infinitely many $\alpha_n \in K - \Lambda$ such that $g(\alpha_n) \neq 0$, i.e., $f(\alpha_1, \ldots, \alpha_n) \neq 0$; moreover, for any such α_n we have $(\alpha_1, \ldots, \alpha_n) \in (K - \Lambda)^n$. This proves the statement for n.

Assignment 2

1.43 Let R be a commutative ring, and consider the ring $R[[X_1, \ldots, X_n]]$ of formal power series over R in indeterminates X_1, \ldots, X_n. Let

$$f = \sum_{i=0}^{\infty} f_i \in R[[X_1, \ldots, X_n]],$$

where f_i is either zero or a homogeneous polynomial of degree i in $R[X_1, \ldots, X_n]$ (for each $i \in \mathbb{N}_0$). Prove that f is a unit of $R[[X_1, \ldots, X_n]]$ if and only if f_0 is a unit of R.

Suggest solution: Assume that f is a unit. Let $g \in R[[X_1, \ldots, X_n]]$ be such that $fg = 1$. Let $g = \sum_{i=0}^{\infty} g_i$ be the standard representation of g. Now

$$fg = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} f_j g_{i-j} \right)$$

and this expression is the standard representation of \(fg \) in \(R[[X_1, \ldots, X_n]] \). Since \(fg = 1 \) we must therefore have

\[
1 = f_0g_0 \quad \text{and} \quad 0 = \sum_{j=0}^{i} f_jg_{i-j} \quad \text{for } i > 0.
\]

In particular, we see that \(f_0g_0 = 1 \), i.e., \(f_0 \) is a unit. Now assume that \(f_0 \) is a unit. We inductively define a sequence \((g_i)_{i \in \mathbb{N}_0} \) by setting \(g_0 = f_0^{-1} \), and for \(i > 0 \),

\[
g_i = -f_0^{-1} \left(\sum_{j=1}^{i} f_j g_{i-j} \right).
\]

Evidently, each \(g_i \) is either zero or a homogeneous polynomial of degree \(i \) in \(R[X_1, \ldots, X_n] \). Also, we have \(f_0g_0 = 1 \) and for \(i > 0 \),

\[
0 = \sum_{j=0}^{i} f_j g_{i-j}.
\]

Now define

\[
g = \sum_{i=0}^{\infty} g_i.
\]

Then \(g \) is in \(R[[X_1, \ldots, X_n]] \), and this is the standard representation of \(g \). Using the above formula for \(fg \) we see that \(fg = 1 \).

Assignment 3

2.22 Let \(K \) be a field. Show that the ideal \((X_1, X_2) \) of the commutative ring \(K[X_1, X_2] \) (of polynomials over \(K \) in indeterminates \(X_1, X_2 \)) is not principal.

Suggest solution: Assume that \((X_1, X_2) = (f) \) for some \(f \in K[X_1, X_2] \); we will obtain a contradiction. Since \(X_1, X_2 \in (f) \), there exist \(g_1, g_2 \in K[X_1, X_2] \) such that

\[
X_1 = g_1f, \quad X_2 = g_2f.
\]

Applying the degree function to the first equation we obtain

\[
\deg(X_1) = \deg(g_1f)
\]

\[
1 = \deg(g_1) + \deg(f).
\]

Similarly,

\[
1 = \deg(g_2) + \deg(f).
\]

Since \(\deg(f), \deg(g_1), \) and \(\deg(f) \) are in \(\mathbb{N}_0 \), we must have \(\deg(f) = 0 \) or \(\deg(f) = 1 \). Assume first that \(\deg(f) = 0 \). Then \(f \in K \). Moreover, since \(f \neq 0 \) (otherwise \(X_1 = 0 \) and \(X_2 = 0 \), which is impossible), \(f \) is a unit in \(K \) and hence a unit in \(K[X_1, X_2] \). Now \(f \in (X_1, X_2) \). Hence, there exist
$h_1, h_2 \in K[X_1, X_2]$ such that

$$f = h_1X_1 + h_2X_2.$$ Evaluating both sides at $X_1 = 0$ and $X_2 = 0$, we obtain $f = 0$, a contradiction (recall that we just showed that f is a non-zero constant). Hence, $\deg(f) = 1$. It follows that $\deg(g_1) = \deg(g_2) = 0$, so that $g_1, g_2 \in K$. Again, we see that g_1 and g_2 are non-zero and are hence units in K and hence units in $K[X_1, X_2]$. Now

$$X_1 = g_1f = g_1g_2^{-1}g_2f = g_1g_2^{-1}X_2.$$ That is,

$$X_1 = (g_1g_2^{-1})X_2.$$ Evaluating both sides at $X_1 = 1$ and $X_2 = 0$, we obtain $1 = 0$, a contradiction.

2.30 Let I, J be ideals of the commutative ring R. Show that

$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}.$$ Let $r \in \sqrt{IJ}$. Then there exists $n \in \mathbb{N}$ such that $r^n \in IJ$. Since $IJ \subseteq I \cap J$ we have $r^n \in I \cap J$. Hence, $r \in \sqrt{I \cap J}$. It follows that

$$\sqrt{IJ} \subseteq \sqrt{I \cap J}.$$ Let $r \in \sqrt{I \cap J}$. Then there exists $n \in \mathbb{N}$ such that $r^n \in I \cap J$. Since $I \cap J \subseteq I$ and $I \cap J \subseteq J$ we have $r \in \sqrt{I}$ and $r \in \sqrt{J}$. Thus, $r \in \sqrt{I} \cap \sqrt{J}$. It follows that

$$\sqrt{I} \cap \sqrt{J} \subseteq \sqrt{I \cap J}.$$ Let $r \in \sqrt{I} \cap \sqrt{J}$. Then there exist $m, n \in \mathbb{N}$ such that $r^m \in I$ and $r^n \in J$. Hence, $r^{mn} = r^m r^n \in IJ$ so that $r \in \sqrt{IJ}$. It follows that

$$\sqrt{I} \cap \sqrt{J} \subseteq \sqrt{IJ}.$$ We have proven that

$$\sqrt{IJ} \subseteq \sqrt{I \cap J} \subseteq \sqrt{I} \cap \sqrt{J} \subseteq \sqrt{IJ}.$$ This implies that

$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}.$$ Assignment 4

3.29 Determine the prime ideals of the ring $\mathbb{Z}/60\mathbb{Z}$ of residue classes of integers modulo 60.

Suggest solution: By 3.28, every prime ideal of $\mathbb{Z}/60\mathbb{Z}$ is of the form $P/60\mathbb{Z}$ where P is a prime ideal of \mathbb{Z} such that $60\mathbb{Z} \subseteq P$. By 3.34, every prime ideal P of \mathbb{Z} such that $60\mathbb{Z} \subseteq P$ is of the form $P = p\mathbb{Z}$, where p is a prime of \mathbb{Z} such that $60\mathbb{Z} \subseteq p\mathbb{Z}$, i.e., $p \mid 60$. It follows that the prime ideals of $\mathbb{Z}/60\mathbb{Z}$ are $2\mathbb{Z}/60\mathbb{Z}$, $3\mathbb{Z}/60\mathbb{Z}$, and $5\mathbb{Z}/60\mathbb{Z}$.

7
3.31 Let R be an integral domain. Recall that for $a_1, \ldots, a_n \in R$, where $n \in \mathbb{N}$, a greatest common divisor (GCD for short) or highest common factor of a_1, \ldots, a_n is an element d of R such that

(i) $d \mid a_i$ for all $i = 1, \ldots, n$, and

(ii) whenever $c \in R$ is such that $c \mid a_i$ for all $i = 1, \ldots, n$, then $c \mid d$.

Show that every non-empty finite set of elements in a PID has a GCD.

Suggest solution: Assume that R is a PID, and let $a_1, \ldots, a_n \in R$. Consider the ideal (a_1, \ldots, a_n). Since R is a PID, there exists $d \in R$ such that $(a_1, \ldots, a_n) = (d)$. We claim that d is a GCD of a_1, \ldots, a_n. Since $a_1, \ldots, a_n \in (a_1, \ldots, a_n) = (d)$, we see that $d \mid a_i$ for $i = 1, \ldots, n$. Assume that $c \in R$ is such that $c \mid a_i$ for $i = 1, \ldots, n$. Let $r_i \in R$ be such that $a_i = r_i c$ for $i = 1, \ldots, n$. Also, let x_1, \ldots, x_n be such that $x_1 a_1 + \cdots + x_n a_n = d$; note that x_1, \ldots, x_n exist because $d \in (a_1, \ldots, a_n)$. Then

$$d = x_1 a_1 + \cdots + x_n a_n = x_1 r_1 c + \cdots + x_n r_n c = (x_1 r_1 + \cdots + x_n r_n) c.$$

Thus, $c \mid d$.

3.42 Show that an irreducible element in a unique factorization domain R generates a prime ideal of R.

Suggest solution: Let $r \in R$ be irreducible. Then by definition r is non-zero and not a unit. Since r is not a unit we have $(r) \not\subseteq R$ (otherwise, $1 \in (r)$ so that r is a unit). Let $a, b \in R$ be such that $ab \in (r)$; to prove that (r) is a prime ideal it will suffice to prove that $a \in (r)$ or $b \in (r)$. If $a = 0$ or $b = 0$, then clearly $a \in (r)$ or $b \in (r)$; we may thus assume that $a \neq 0$ and $b \neq 0$. If a or b is a unit, then also $a \in (r)$ or $b \in (r)$; we may thus also assume that a and b are non-units. Since $ab \in (r)$, there exists $s \in R$ such that $ab = rs$. Since R is an integral domain we have $rs = ab \neq 0$; also, rs is not a unit (otherwise (r) contains a unit, contradicting $(r) \not\subseteq R$). As R is a UFD, there exist irreducible elements $p_1, \ldots, p_k, q_1, \ldots, q_\ell, y_1, \ldots, y_n$ in R such that

$$a = p_1 \cdots p_k, \quad b = q_1 \cdots q_\ell, \quad rs = y_1 \cdots y_n.$$

Since r is irreducible, we may assume that $y_1 = vr$ for some unit v in R. Since $ab = rs$ we have

$$p_1 \cdots p_k q_1 \cdots q_\ell = vry_2 \cdots y_n.$$

Since r is irreducible and R is a UFD, there exists a unit u in R such that $r = up_i$ for some $i \in \{1, \ldots, k\}$ or $r = uq_j$ for some $j \in \{1, \ldots, \ell\}$. Hence, $p_i \in (r)$ for some $i \in \{1, \ldots, k\}$ or $q_j \in (r)$ for some $j \in \{1, \ldots, \ell\}$ (recall that u is a unit, so that $p_i = u^{-1} r$ or $q_j = u^{-1} r$). This implies that $a \in (r)$ or $b \in (r)$, as desired.

3.47 Let P be a prime ideal of the commutative ring R. Show that $\sqrt{P^n} = P$ for all $n \in \mathbb{N}$.

Suggest solution: Let $n \in \mathbb{N}$. Let $x \in \sqrt{P^n}$. Then there exists $m \in \mathbb{N}$ such that $x^m \in P^n$. Now $P^n \subseteq P$. Hence, $x^m \in P$. Since P is prime we have $x \in P$. This proves that $\sqrt{P^n} \subseteq P$. Let $x \in P$. Then $x^n \in P^n$. Therefore, $x \in \sqrt{P^n}$. This proves that $P \subseteq \sqrt{P^n}$. We conclude that $P = \sqrt{P^n}$.

8
Assignment 5

3.50 Let R be a commutative ring, and let N be the nilradical of R. Show that the ring R/N has zero nilradical.

Suggest solution: Let $x \in R/N$ and assume that $n \in \mathbb{N}$ is such that $x^n = 0_{R/N}$; we need to prove that $x = 0_{R/N}$. Let $a \in R$ be such that $x = a + N$. Then $0_{R/N} = x^n = (a + N)^n = a^n + N$. This means that $N = a^n + N$ so that $a^n \in N$. Since $a^n \in N$ there exists $m \in \mathbb{N}$ such that $(a^n)^m = 0$, i.e., $a^{nm} = 0$. Therefore, $a \in N$. We now have $x = a + N = N = 0_{R/N}$, as desired.

3.51 Let R be a non-trivial commutative ring. Show that R has exactly one prime ideal if and only if each element of R is either a unit or nilpotent.

Suggest solution: Assume that R has exactly one prime ideal P. Let $x \in R$. Assume x is not a unit; we need to prove that x is nilpotent. Since x is not a unit (x) is a proper ideal, and is hence included in a maximal ideal; since every maximal ideal is prime and P is unique, $(x) \subseteq P$. Now by 3.49 we have

$$\sqrt{0} = \bigcap_{P' \in \text{Spec}(R)} P' = \bigcap_{P' \subseteq \{P\}} P' = P.$$

Hence, $x \in (x) \subseteq P = \sqrt{0}$. This implies that x is nilpotent.

Next, assume that every element of R is either a unit or nilpotent. Since R is non-trivial, $0 \neq 1$. Hence, the ideal $0 = (0)$ is a proper ideal. Since 0 is proper, the ideal 0 is included in a maximal ideal; since every maximal ideal is prime, this proves that R has at least one prime ideal. Let P be a prime ideal of R; we will prove that $P = \sqrt{0}$, which will show that P is unique. Let $r \in P$. Since P is proper the element r is not a unit. Hence, r is nilpotent so that $r \in \sqrt{0}$. This proves that $P \subseteq \sqrt{0}$. Conversely, let $r \in \sqrt{0}$. Let $n \in \mathbb{N}$ be such that $r^n = 0$. Then $r^n = 0 \in P$. Since P is prime we have $r \in P$. It follows that $\sqrt{0} \subseteq P$. We conclude that $P = \sqrt{0}$ so that P is unique.

3.53 Let P, I be ideals of the commutative ring R with P prime and $I \subseteq P$. Show that the non-empty set

$$\Theta = \{P' \in \text{Spec}(R) : I \subseteq P' \subseteq P\}$$

has a minimal member with respect to inclusion.

Suggest solution: We partially order Θ by declaring that $P_1 \leq P_2$ if and only if $P_2 \subseteq P_1$. The set Θ is non-empty because $P \in \Theta$. Let Y be a totally ordered non-empty subset of Θ; we need to prove that Y has an upper bound in Θ. Let Q be the intersection of all the elements of Y. We claim that $Q \in \Theta$. Evidently, Q is an ideal because Q is the intersection of ideals. Also, it is clear that $I \subseteq Q \subseteq P$; in particular, Q is proper because P is proper. Let $a, b \in R$ be such that $ab \in Q$. Assume that $a \notin Q$; to prove that Q is prime it will suffice to prove that $b \in Q$. Let $P' \in Y$; to prove that $b \in Q$ it will suffice to prove that $b \in P'$. Now since $a \notin Q$ there exists $P'' \in Y$ such that $a \notin P''$. Consider P' and P''. Since Y is totally ordered we have $P' \subseteq P''$ or $P'' \subseteq P'$. Assume first that $P' \subseteq P''$. Now $ab \in Q \subseteq P'$. Since P' is prime we have $a \in P'$ or $b \in P'$. We cannot have $a \in P'$ for otherwise $a \in P' \subseteq P''$, contradicting $a \notin P''$. Therefore, $b \in P'$. Assume now that $P'' \subseteq P'$. We have $ab \in Q \subseteq P''$. Since P'' is prime we have $a \in P''$ or $b \in P''$. However, $a' \notin P''$;
hence, \(b \in P'' \subseteq P' \). We have proven that \(b \in P' \); thus, \(Q \) is a prime ideal of \(R \). It follows now that \(Q \in \Theta \). Clearly, \(Q \) is an upper bound in \(\Theta \) for \(Y \). By Zorn’s Lemma the set \(\Theta \) has a minimal member with respect to inclusion.

4.7 Let \(f : R \to S \) be a surjective homomorphism of commutative rings. Use the extension and contraction notation of 2.41 and 2.45 in conjunction with \(f \). Note that, by 2.46, \(C_R = \{ I \in \mathcal{I}_R : \ker(f) \subseteq I \} \) and \(\mathcal{E}_S = \mathcal{I}_S \). Let \(I \in C_R \). Show that

(i) \(I \) is a primary ideal of \(R \) if and only if \(I^e \) is a primary ideal of \(S \).

(ii) When this is the case, \(\sqrt{I} = (\sqrt{I^e})^c \) and \(\sqrt{T^e} = (\sqrt{T})^e \).

Suggest solution: We first note that by 2.46 we have \(J^e = f(J) \) for \(J \in C_R \), and also the maps

\[
C_R \xrightarrow{\text{extension}} \mathcal{I}_S \quad \text{and} \quad C_R \xleftarrow{\text{contraction}} \mathcal{I}_S
\]

are inverses of each other.

(i) Define \(g : R \to S/I^e = S/f(I) \) by \(g(r) = f(r) + f(I) \). It is straightforward to verify that \(g \) is a ring homomorphism. Since \(f \) is surjective, \(g \) is also surjective. Also, for \(r \in R \) we have

\[
g(r) = 0 \iff f(r) + f(I) = f(I)
\]

\[
\iff \text{there exists } x \in I \text{ such that } f(r) = f(x)
\]

\[
\iff \text{there exists } x \in I \text{ such that } f(r - x) = 0
\]

\[
\iff \text{there exists } x \in I \text{ such that } r - x \in \ker(f)
\]

\[
\iff r \in I \quad (\text{because } \ker(f) \subseteq I).
\]

Thus, \(\ker(g) = I \). By the Isomorphism Theorem, \(g \) induces an isomorphism of rings

\[
R/I \xrightarrow{\sim} S/f(I).
\]

Since \(R/I \) and \(S/f(I) \) are isomorphic the ideal \(I \) is primary if and only if \(f(I) \) is primary (see 4.3).

(ii) We first prove that \(\sqrt{I^e} = (\sqrt{I})^e \). Since \(I^e = f(I) \) and \((\sqrt{T})^e = f(\sqrt{T}) \), we need to prove that \(\sqrt{f(I)} = f(\sqrt{I}) \). Let \(s \in \sqrt{f(I)} \). Let \(r \in R \) be such that \(f(r) = s \). Since \(s \in \sqrt{f(I)} \), there exists \(n \in \mathbb{N} \) such that \(s^n \in f(I) \). Let \(a \in I \) be such that \(s^n = f(a) \). We now have \(f(r^n - a) = 0 \). Since \(\ker(f) \subseteq I \), this implies that \(r^n \in I \). That is, \(r \in \sqrt{I} \). Applying \(f \), we obtain \(s = f(r) \in f(\sqrt{I}) \).

We have proven that \(\sqrt{f(I)} \subseteq f(\sqrt{I}) \). Next, let \(s \in f(\sqrt{I}) \). Let \(r \in \sqrt{I} \) be such that \(f(r) = s \). Since \(r \in \sqrt{I} \) there exists \(n \in \mathbb{N} \) such that \(r^n \in I \). Therefore, \(s^n = f(r^n) \in f(I) \). This implies that \(s \in \sqrt{f(I)} \), so that \(f(\sqrt{I}) \subseteq \sqrt{f(I)} \). Hence, \(\sqrt{f(I)} = f(\sqrt{I}) \).

Now

\[
(\sqrt{I^e})^c = (\sqrt{f(I)})^c \quad (\text{because } I^e = f(I))
\]

\[
= (f(\sqrt{I}))^c \quad (\text{by } \sqrt{f(I)} = f(\sqrt{I}))
\]

\[
= \sqrt{T} \quad (\text{by } 2.46; \text{see the above summary}).
\]
Let I be a proper ideal of the commutative ring R, and let P and Q be ideals of R which contain I. Prove that Q is a P-primary ideal of R if and only if Q/I is a P/I-primary ideal of R/I.

Suggest solution: It will suffice to prove that Q is primary if and only if Q/I is primary and that $\sqrt{Q/I} = \sqrt{Q}/I$. Let $f : R \to R/I$ be the natural map. Then f is a surjective ring homomorphism. By 4.7 (i), we have Q is primary if and only if $f(Q) = Q/I$ is primary. It remains to prove that $\sqrt{Q/I} = \sqrt{Q}/I$. Now

\[
\sqrt{Q/I} = \sqrt{f(Q)} = \sqrt{Q}/I.
\]

Assignment 6

4.21 Let $f : R \to S$ be a homomorphism of commutative rings, and use the contraction notation of 2.41 in conjunction with f. Let I be a decomposable ideal of S.

(i) Let

\[I = Q_1 \cap \cdots \cap Q_n \quad \text{with} \quad \sqrt{Q_i} = P_i \quad \text{for} \quad i = 1, \ldots, n \]

be a primary decomposition of I. Show that

\[I^c = Q_1^c \cap \cdots \cap Q_n^c \quad \text{with} \quad \sqrt{Q_i^c} = P_i^c \quad \text{for} \quad i = 1, \ldots, n \]

is a primary decomposition of I. Deduced that I^c is a decomposable ideal of R and that

\[\text{ass}_R(I^c) \subseteq \{ P^c : P \in \text{ass}_R(I) \}. \]

(ii) Now assume that f is surjective. Show that, if the first primary decomposition in (i) is minimal, then so too is the second, and deduce that in these circumstances,

\[\text{ass}_R(I^c) = \{ P^c : P \in \text{ass}_R(I) \}. \]

Suggest solution: (i) We have

\[
I^c = f^{-1}(I) = f^{-1}(Q_1 \cap \cdots \cap Q_n) = f^{-1}(Q_1) \cap \cdots \cap f^{-1}(Q_n) = Q_1^c \cap \cdots \cap Q_n^c.
\]

Also, for $i \in \{1, \ldots, n\}$,

\[
\sqrt{Q_i^c} = (\sqrt{Q_i})^c \quad \text{(2.43(iv))}
\]
Next we prove that Q_i^c is primary for $i \in \{1, \ldots, n\}$. Let $i \in \{1, \ldots, n\}$. The ideal Q_i^c is primary (otherwise, $1 \in Q_i^c$ so that $1 = f(1) \in Q_i$, a contradiction). Let $a, b \in R$ and assume that $ab \in Q_i^c$ and $a \notin Q_i^c$; we need to prove that $b \in \sqrt{Q_i^c}$. Since $ab \in Q_i^c = f^{-1}(Q_i)$ we have $f(ab) = f(a)f(b) \in Q_i$. Since Q_i is primary, we have $f(a) \in Q_i$ or $f(b) \in \sqrt{Q_i}$. If $f(a) \in Q_i$, then $a \in f^{-1}(Q_i) = Q_i^c$, a contradiction. Hence, $f(b) \in \sqrt{Q_i}$. This means that $b \in f^{-1}(\sqrt{Q_i}) = (\sqrt{Q_i})^c = \sqrt{Q_i^c}$. Hence, Q_i^c is primary. This completes the proof that the above is a primary decomposition of I^c and thus I^c is decomposable. We have $\text{ass}_R(I^c) \subseteq \{P^c : P \in \text{ass}_R(I)\}$ because the above primary decomposition can be refined to a minimal primary decomposition (see 4.16 or the lecture notes).

(ii) Assume that f is surjective. Assume that the first primary decomposition in (i) is minimal; we need to prove that second primary decomposition is also minimal. First we verify that P_1^c, \ldots, P_n^c are pairwise unequal. Assume that $P_i^c = P_j^c$ for some $i, j \in \{1, \ldots, n\}$. Then $f^{-1}(P_i) = f^{-1}(P_j)$. Applying f and using that f is surjective, we find that $P_i = P_j$. As the first primary decomposition is minimal, we must have $i = j$. This implies that P_1^c, \ldots, P_n^c are pairwise unequal. Finally, assume that $i \in \{1, \ldots, n\}$ is such that

$$\bigcap_{j=1 \atop j \neq i}^n Q_j^c \subseteq Q_i^c.$$

Let $y \in \bigcap_{j=1 \atop j \neq i}^n Q_j$. Since f is surjective, there exists $x \in R$ such that $f(x) = y$. Since $y \in Q_j$ for $j \neq i$, we have $x \in f^{-1}(Q_j) = Q_j^c$ for $j \neq i$. Therefore, $x \in \bigcap_{j=1 \atop j \neq i}^n Q_j^c$. By the assumed inclusion, we get $x \in Q_i^c = f^{-1}(Q_i)$. This implies that $y \in Q_i$. We have proven that

$$\bigcap_{j=1 \atop j \neq i}^n Q_j \subseteq Q_i,$$

contradicting the minimality of the first primary decomposition. That $\text{ass}_R(I^c) = \{P^c : P \in \text{ass}_R(I)\}$ follows from definition of $\text{ass}_R(I^c)$.

4.22 Let $f : R \to S$ be a surjective homomorphism of commutative rings; use the extension notation of 2.41 in conjunction with f. Let $I, Q_1, \ldots, Q_n, P_1, \ldots, P_n$ be ideals of R that contain $\ker(f)$. Show that

$$I = Q_1 \cap \cdots \cap Q_n \quad \text{with} \quad \sqrt{Q_i} = P_i \quad \text{for} \quad i = 1, \ldots, n$$

(1)

is a primary decomposition of I if and only if

$$I^e = Q_1^e \cap \cdots \cap Q_n^e \quad \text{with} \quad \sqrt{Q_i^e} = P_i^e \quad \text{for} \quad i = 1, \ldots, n$$

(2)

is a primary decomposition of I^e, and that, when this is the case, the first of these is minimal if and only if the second is. Deduce that I is a decomposable ideal of R if and only if I^e is a decomposable
ideal of S, and when this is the case,

$$\text{ass}_R(I) = \{P^e : P \in \text{ass}_R(I)\}.$$

Suggest solution: We first note the following fact: if A and B are ideals of R such that $\ker(f) \subseteq A$ and $\ker(f) \subseteq B$, then $f(A \cap B) = f(A) \cap f(B)$. We leave the proof of this as an exercise. Assume that (1) is a primary decomposition. Then

$$I = Q_1 \cap \cdots \cap Q_n$$
$$f(I) = f(Q_1 \cap \cdots \cap Q_n)$$
$$I^e = f(Q_1) \cap \cdots \cap f(Q_n)$$
$$I^e = Q_1^e \cap \cdots \cap Q_n^e.$$

Also, if $i \in \{1, \ldots, n\}$, then $f(Q_i) = Q_i^e$ is primary and $\sqrt{Q_i^e} = P_i^e$ by 4.7. Thus, (2) is a primary decomposition. Assume that (1) is a minimal primary decomposition; we want to prove that (2) is also a minimal primary decomposition. We first prove that P_1^e, \ldots, P_n^e are pairwise unequal. Assume that $P_i^e = P_j^e$ for some $i, j \in \{1, \ldots, n\}$; we need to prove $i = j$. Now since $P_i^e = P_j^e$ we have $(P_i^e)^c = (P_j^e)^c$. Now $(P_i^e)^c = f^{-1}(f(P_i)) = P_i$ because f is surjective and $\ker(f) \subseteq P_i$; similarly, $(P_j^e)^c = P_j$. We thus get $P_i = P_j$. Since (1) is minimal we must have $i = j$.

Finally, assume that $i \in \{1, \ldots, n\}$ is such that

$$\bigcap_{j=1}^n Q_j^e \subseteq Q_i^e;$$

we will obtain a contradiction. Now

$$\bigcap_{j=1}^n Q_j^e \subseteq Q_i^e$$

$$f^{-1}(\bigcap_{j=1}^n Q_j^e) \subseteq f^{-1}(Q_i^e)$$

$$\bigcap_{j=1}^n f^{-1}(Q_j^e) \subseteq Q_i$$

$$\bigcap_{j=1}^n Q_j \subseteq Q_i.$$

This contradicts that (1) is a minimal primary decomposition.
Next, 4.21 implies that if \((2) \) is a primary decomposition, then \((1) \) is a primary decomposition, and also if \((2) \) is a minimal primary decomposition, then \((1) \) is a minimal primary decomposition. The remaining assertion follows immediately from what we have already proven.

4.28 Let \(K \) be a field and let \(R = K[X,Y] \) be the ring of polynomials over \(K \) in indeterminates \(X, Y \). In \(R \), let \(I = (X^3, XY) \).

(i) Show that, for every \(n \in \mathbb{N} \), the ideal \((X^3, XY, Y^n) \) of \(R \) is primary.

(ii) Show that \(I = (X) \cap (X^3, Y) \) is a minimal primary decomposition of \(I \).

(iii) Construct infinitely many different minimal primary decompositions of \(I \).

Suggest solution: (i) Let \(M = (X, Y) \). For \(n \in \mathbb{N} \) let \(I_n = (X^3, XY, Y^n) \). We have

\[
M^3 = (X^3, X^2Y, XY^2, Y^3) \subseteq I_1 = (X^3, XY, Y) \subseteq M = (X, Y),
\]
\[
M^3 = (X^3, X^2Y, XY^2, Y^3) \subseteq I_2 = (X^3, XY, Y^2) \subseteq M = (X, Y)
\]

and if \(n \geq 3 \),

\[
M^n = (X^n, X^{n-1}Y, \ldots, XY^{n-1}, Y^n) \subseteq I_n = (X^3, XY, Y^n) \subseteq M = (X, Y).
\]

Taking radicals, we obtain

\[
\sqrt{M^3} = M \subseteq \sqrt{I_1} \subseteq \sqrt{M} = M,
\]
\[
\sqrt{M^3} = M \subseteq \sqrt{I_2} \subseteq \sqrt{M},
\]

and if \(n \geq 3 \),

\[
\sqrt{M^n} = M \subseteq \sqrt{I_n} \subseteq \sqrt{M} = M.
\]

It follows that \(\sqrt{I_n} = M \) for all \(n \in \mathbb{N} \). By Proposition 4.9 the ideal \(I_n \) is primary for all \(n \in \mathbb{N} \).

(ii) First we prove that \(I = (X) \cap (X^3, Y) \). It is clear that \(I \subseteq (X) \cap (X^3, Y) \). Let \(g \in (X) \cap (X^3, Y) \). Then there exist \(a, b, c \in R \) such that \(g = aX \) and \(g = bX^3 + cY \). Now \(aX = bX^3 + cY \). Substituting \(X = 0 \) we obtain \(0 = c(0, Y)Y^3 \). This implies that there exists \(d \in R \) such that \(c = dX \). We now have \(g = bX^3 + dXY \). Hence, \(g \in I \) so that \((X) \cap (X^3, Y) \subseteq I \). It follows that \(I = (X) \cap (X^3, Y) \).

Next, we note that \((X) \) is a prime ideal of \(R \) (since \(R/(X) \cong K[Y] \), which is an integral domain). Also, we have

\[
(X,Y)^3 = (X^3, X^2Y, XY^2, Y^3) \subseteq (X, Y) \subseteq (X,Y).
\]

Taking radicals, we obtain

\[
(X,Y) \subseteq \sqrt{(X^3, Y)} \subseteq (X,Y).
\]

Hence, \((X,Y) = \sqrt{(X^3, Y)} \), which implies by Proposition 4.9 that \((X^3, Y) \) is primary (since \((X,Y) \) is maximal). It is clear that the primary decomposition \(I = (X) \cap (X^3, Y) \) is minimal.

(iii) Using the method of (ii) we find that

\[
I = (X^3, XY) = (X) \cap (X^3, XY, Y^n)
\]
for $n \in \mathbb{N}$. The ideal (X) is prime and primary, and (X^3, XY, Y^n) is primary with radical (X, Y) for $n \in \mathbb{N}$ by (i). Hence, this is a primary decomposition of I. It is straightforward to verify that this primary decomposition is minimal. The primary decompositions $I = (X) \cap (X^3, XY, Y^n)$ are all different because $(X^3, XY, Y^n) \neq (X^3, XY, Y^m)$ for $m, n \in \mathbb{N}$ with $m \neq n$.

Assignment 8

5.26. Let the situation be as in 5.23. Show that if the ring R is Noetherian, then so too is the ring $S^{-1}R$.

Suggest solution: Assume that R is Noetherian. Let

$$J_1 \subseteq J_2 \subseteq J_3 \subseteq \cdots$$

be a sequence of ideals in $S^{-1}R$. Then

$$(J_1)^c \subseteq (J_2)^c \subseteq (J_3)^c \subseteq \cdots$$

is a sequence of ideals in R. Since R is Noetherian, there exists $n \in \mathbb{N}$ such that for $k \in \mathbb{N}$ with $k \geq n$ we have $(J_{n+k})^c = (J_n)^c$. Therefore, $((J_{n+k})^c)^c = ((J_n)^c)^c$ for $k \geq n$. By 5.24 we have $((J_n)^c)^c$ and $((J_{n+k})^c)^c = J_{n+k}$ for $k \geq n$. Hence, $J_{n+k} = J_n$ for $k \geq n$. It follows that $S^{-1}R$ is Noetherian.

Suggest solution: Alternatively, we can argue as follows. Assume that R is Noetherian. Assume that J is an ideal of $S^{-1}R$; to prove that $S^{-1}R$ is Noetherian, it will suffice to prove that J is finitely generated. Then J^c is an ideal of R. Since R is Noetherian, J^c is finitely generated by, say, r_1, \ldots, r_t: $J^c = (r_1, \ldots, r_t)$. We claim that $(J^c)^c$ is generated by $r_1/1, \ldots, r_t/1$. It is clear that $r_1/1, \ldots, r_t/1$ are contained in $(J^c)^c$. Let $x \in (J^c)^c$. By 5.25 there exist $a \in J^c$ and $s \in S$ such that $x = a/s$. Since $a \in J^c$ there exist $c_1, \ldots, c_t \in R$ such that $a = c_1 r_1 + \cdots + c_t r_t$. This implies that

$$x = a/s$$

$$= (c_1 r_1 + \cdots + c_t r_t)/s$$

$$= c_1 r_1/s + \cdots + c_t r_t/s$$

$$= (c_1/s)(r_1/1) + \cdots + (c_t/s)(r_t/1).$$

Thus, $x \in (r_1/1, \ldots, r_t/1)$. We have proven that $(J^c)^c = (r_1/1, \ldots, r_t/1)$, so that $(J^c)^c$ is finitely generated. Since $J = (J^c)^c$ by 5.24, J is finitely generated. This implies that $S^{-1}R$ is Noetherian.

5.34. Let R be a non-trivial commutative ring, and assume that, for each $P \in \text{Spec}(R)$, the localization R_P has no non-zero nilpotent element. Show that R has no non-zero nilpotent element.

Suggest solution: Assume that $x \in R$ is such that $x \neq 0$ and x is nilpotent; we will obtain a contradiction. Let $I = \{s \in R : sz = 0\}$. Then $I = (0 : x)$, and I is an ideal of R. Assume that $I = R$. Then $1 \in I$; this implies that $1 \cdot x = 0$, i.e., $x = 0$; this is a contradiction. Hence, $I \subsetneq R$.

15
Since I is a proper ideal, I is included in a maximal ideal M. Since M is a maximal ideal, M is prime. Consider R_M and the image $x/1$ of x in R_M under the natural map $R \rightarrow R_M$. Since x is nilpotent so is $x/1$. By hypothesis, R_M does not contain a non-zero nilpotent element. Therefore, $x/1 = 0_{R_M} = 0/1$. This implies that there exists an element $s \in S = R - M$ such that $sx = 0$. By the definition of I we have $s \in I \subseteq M$. We now have $s \in M \cap (R - M)$; this is a contradiction.

6.11. Let M be a module over a commutative ring R, and let $J \subseteq M$; let G be the submodule of M generated by J.

(i) Show that, if $J = \emptyset$, then $G = 0$.

(ii) Show that, if $J \neq \emptyset$, then

$$G = \left\{ \sum_{i=1}^{n} r_i j_i : n \in \mathbb{N}, r_1, \ldots, r_n \in R, j_1, \ldots, j_n \in J \right\}.$$

(iii) Show that, if $\emptyset \neq J = \{l_1, \ldots, l_t\}$, then

$$G = \left\{ \sum_{i=1}^{t} r_i l_i : r_1, \ldots, r_t \in R \right\}.$$

Suggest solution:

(i) Assume that $J = \emptyset$. Since G is a submodule of M we have $0 \subseteq G$. Also, 0 is a submodule of M such that $\emptyset \subseteq 0$. This implies that

$$G = \bigcap_{N \text{ submodule of } M \text{ such that } J \subseteq N} N \subseteq 0.$$

Hence, $G = 0$.

(ii) Define

$$W = \left\{ \sum_{i=1}^{n} r_i j_i : n \in \mathbb{N}, r_1, \ldots, r_n \in R, j_1, \ldots, j_n \in J \right\}.$$

We need to prove that $G = W$. Using the submodule criterion, it is straightforward to verify that W is a submodule of M that contains J. Hence,

$$G = \bigcap_{N \text{ submodule of } M \text{ such that } J \subseteq N} N \subseteq W.$$

Since G contains J, G also contains all R-linear combinations of elements of J. Thus, $W \subseteq G$. We conclude that $G = W$.

(iii) Let W be as above, and let

$$U = \left\{ \sum_{i=1}^{t} r_i l_i : r_1, \ldots, r_t \in R \right\}.$$
Evidently, $U \subseteq W$. Conversely, let $x = \sum_{i=1}^{n} r_{ij}i \in W$. Recalling that $J = \{l_1, \ldots, l_t\}$, we have:

$$
x = \sum_{i=1}^{n} r_{ij}i
= \left(\sum_{i=1}^{n} r_{ij}i \right) + \cdots + \left(\sum_{i=1}^{n} r_{ij}i \right)
= \left(\sum_{i=1}^{n} r_{lj}l_1 \right) + \cdots + \left(\sum_{i=1}^{n} r_{lj}l_t \right)
= \left(\sum_{i=1}^{n} r_i \right) l_1 + \cdots + \left(\sum_{i=1}^{n} r_i \right) l_t
\in U.
$$

Thus, $W \subseteq U$. It follows that $W = U$.

Assignment 11

7.45 Let G be a module over a non-trivial commutative Noetherian ring R. Show that G has finite length if and only if G is finitely generated and there exist $n \in \mathbb{N}$ and maximal ideals M_1, \ldots, M_n of R (not necessarily distinct) such that

$$
M_1 \cdots M_n G = 0.
$$

Suggest solution: Assume that G has finite length. By 7.36 the R-module G is Noetherian. By 7.13, G is finitely generated. Let

$$
0 = G_0 \supsetneq G_1 \supsetneq \cdots \supsetneq G_{n-1} \supsetneq G_n = G
$$

be a composition series. By definition, G_i/G_{i-1} is simple for $i = 1, \ldots, n$. By 7.32, for each $i \in \{1, \ldots, n\}$ there exists a maximal ideal M_i of R such that $G_i/G_{i-1} \cong R/M_i$ as R-modules. Now let $g \in G$, and let $m_i \in M_i$ for $i \in \{1, \ldots, n\}$. Since $G_n/G_{n-1} \cong R/M_n$, we have $r(x + G_{n-1}) = 0$ for $r \in M_n$ and $x \in G_n$. This implies that $m_n g \in G_{n-1}$. Similarly, $m_{n-1}m_ng \in G_{n-2}$, and continuing, we find that $m_1 \cdots m_ng \in G_0 = 0$. This proves that $M_1 \cdots M_n G = 0$.

Now assume that G is finitely generated and and there exist $n \in \mathbb{N}$ and maximal ideals M_1, \ldots, M_n of R (not necessarily distinct) such that

$$
M_1 \cdots M_n G = 0.
$$
Since R is a Noetherian ring (by assumption), and since G is finitely generated, G is Noetherian by 7.22. By 7.30, G is also Artinian (this uses the hypothesis $M_1 \cdots M_n G = 0$). By 7.36, G has finite length.

7.46 Let R be a principal ideal domain which is not a field. Let G be an R-module. Show that G has finite length if and only if G is finitely generated and there exists $r \in R$ with $r \neq 0$ such that $rG = 0$.

Assume that G has finite length. By 7.45, G is finitely generated, and there exist $n \in \mathbb{N}$ and maximal ideals M_1, \ldots, M_n of R (not necessarily distinct) such that

$$M_1 \cdots M_n G = 0.$$

Since R is not a field, 0 is not a maximal ideal of R. This implies that M_1, \ldots, M_n are all non-zero. Since R is a PID, we may write $M_i = (r_i)$ for some $r_i \in R$ for $i \in \{1, \ldots, n\}$. Since $M_1 \cdots M_n G = 0$ we have $rG = 0$ with $r = r_1 \cdots r_n$; note that $r \neq 0$ as $r_1 \neq 0, \ldots, r_n \neq 0$, and R is an integral domain.

Now suppose that G is finitely generated and there exists $r \in R$ with $r \neq 0$ and $rG = 0$. If r is a unit, then $G = 0$, and G has finite length. Assume that r is not a unit. Since R is a PID, R is a UFD by 3.39. Therefore, there exist $n \in \mathbb{N}$ and irreducible elements $p_1, \ldots, p_n \in R$ such that $r = p_1 \cdots p_n$. Let $M_i = (p_i)$ for $i \in \{1, \ldots, n\}$. By 3.34, M_i is a maximal ideal of R for $i \in \{1, \ldots, n\}$. Since $rG = 0$ we have $M_1 \cdots M_n G = 0$. By 7.45 we now conclude that G has finite length.