Theta Series

Brooks Roberts

University of Idaho

Course notes as of October 17, 2019, with course completion in May 2019
Contents

1 Background ... 1
 1.1 Dirichlet characters 1
 1.2 Fundamental discriminants 6
 1.3 Quadratic extensions 15
 1.4 Kronecker Symbol 16
 1.5 Quadratic forms .. 19
 1.6 The upper half-plane 27

2 Theta series on the upper half-plane 29
 2.1 Definition and convergence 29
 2.2 The Poisson summation formula 33
 2.3 Differential operators 41
 2.4 A space of theta series 46

A Some tables ... 57
 A.1 Tables of fundamental discriminants 57

Index ... 59

Bibliography ... 62

List of Tables

A.1 Negative fundamental discriminants between \(-1\) and \(-100\) ... 57
A.2 Positive fundamental discriminants between \(1\) and \(100\) 58
Chapter 1

Background

1.1 Dirichlet characters

Let \(N \) be a positive integer. A **Dirichlet character** modulo \(N \) is a homomorphism

\[
\chi : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times.
\]

If \(N \) is a positive integer and \(\chi \) is a Dirichlet character modulo \(N \), then we associate to \(\chi \) a function

\[
\mathbb{Z} \to \mathbb{C},
\]

also denoted by \(\chi \), by the formula

\[
\chi(a) = \begin{cases}
\chi(a + N\mathbb{Z}) & \text{if } (a, N) = 1, \\
0 & \text{if } (a, N) > 1
\end{cases}
\]

for \(a \in \mathbb{Z} \). We refer to this function as the extension of \(\chi \) to \(\mathbb{Z} \). It is easy to verify that the following properties hold for the extension of \(\chi \) to \(\mathbb{Z} \):

1. \(\chi(1) = 1 \);
2. if \(a_1, a_2 \in \mathbb{Z} \), then \(\chi(a_1a_2) = \chi(a_1)\chi(a_2) \);
3. if \(a \in \mathbb{Z} \) and \((a, N) > 1 \), then \(\chi(a) = 0 \);
4. if \(a_1, a_2 \in \mathbb{Z} \) and \(a_1 \equiv a_2 \pmod{N} \), then \(\chi(a_1) = \chi(a_2) \).

Let \(N \) be a positive integer, and let \(\chi \) be a Dirichlet character modulo \(N \). We have \(\chi(a)^{\phi(N)} = 1 \) for \(a \in \mathbb{Z} \) with \((a, N) = 1 \); in particular, \(\chi(a) \) is a \(\phi(N) \)-th root of unity. Here, \(\phi(N) \) is the number of integers \(a \) such that \((a, N) = 1 \) and \(1 \leq a \leq N \).

If \(N = 1 \), then there exists exactly one Dirichlet character \(\chi \) modulo \(N \); the extension of \(\chi \) to \(\mathbb{Z} \) satisfies \(\chi(a) = 1 \) for all \(a \in \mathbb{Z} \).
CHAPTER 1. BACKGROUND

Let N be a positive integer. The Dirichlet character η modulo N that sends every element of $(\mathbb{Z}/N\mathbb{Z})^\times$ to 1 is called the **principal character** modulo N. The extension of η to \mathbb{Z} is given by

$$
\eta(a) = \begin{cases}
1 & \text{if } (a, N) = 1, \\
0 & \text{if } (a, N) > 1
\end{cases}
$$

for $a \in \mathbb{Z}$.

Let $f : \mathbb{Z} \to \mathbb{C}$ be a function, let N be a positive integer, and let χ be a Dirichlet character modulo N. We say that f **corresponds** to χ if f is the extension of χ, i.e., $f(a) = \chi(a)$ for all $a \in \mathbb{Z}$.

Let $f : \mathbb{Z} \to \mathbb{C}$, and assume that there exists a positive integer N and a Dirichlet character χ modulo N such that f corresponds to χ. Assume $N > 1$. Then there exist infinitely many positive integers N' and Dirichlet characters χ' modulo N' such that f corresponds to χ'. For example, let N' be any positive integer such that $N | N'$ and N' has the same prime divisors as N. Let χ' be the Dirichlet character modulo N' that is the composition

$$(\mathbb{Z}/N'\mathbb{Z})^\times \twoheadrightarrow (\mathbb{Z}/N\mathbb{Z})^\times \xrightarrow{\chi} \mathbb{C}^\times,$$

where the first map is the natural surjective homomorphism. The extension of χ' to \mathbb{Z} is the same as the extension of χ to \mathbb{Z}, namely f. Thus, f also corresponds to χ'.

Lemma 1.1.1. Let $f : \mathbb{Z} \to \mathbb{C}$ be a function and let N be a positive integer. Assume that f satisfies the following conditions:

1. $f(1) \neq 0$;
2. if $a_1, a_2 \in \mathbb{Z}$, then $f(a_1 a_2) = f(a_1) f(a_2)$;
3. if $a \in \mathbb{Z}$ and $(a, N) > 1$, then $f(a) = 0$;
4. if $a \in \mathbb{Z}$, then $f(a + N) = f(a)$.

There exists a unique Dirichlet character χ modulo N such that f corresponds to χ.

Proof. Assume that f satisfies 1, 2, 3, and 4. Since $1 = 1 \cdot 1$, we have $f(1) = f(1) f(1)$, so that $f(1) = 1$. Next, we claim that $f(a_1) = f(a_2)$ for $a_1, a_2 \in \mathbb{Z}$ with $a_1 \equiv a_2 \pmod{N}$, or equivalently, if $a \in \mathbb{Z}$ and $x \in \mathbb{Z}$ then $f(a + xN) = f(a)$. Let $a \in \mathbb{Z}$ and $x \in \mathbb{Z}$. Write $x = \epsilon z$, where $\epsilon \in \{1, -1\}$ and z is positive. Then

$$
f(a + xN) = \chi(\epsilon(\epsilon a + zN)) \\
= f(\epsilon) \chi(\epsilon a + zN) \\
= f(\epsilon) \chi(\epsilon a + \underbrace{N + \cdots + N}_z)
$$
Now let \(a \in \mathbb{Z} \) with \((a, N) = 1\); we assert that \(f(a) \neq 0 \). Since \((a, N) = 1\), there exists \(b \in \mathbb{Z} \) such that \(ab = 1 + kN \) for some \(k \in \mathbb{Z} \). We have
\[
1 = f(1) = f(1 + kN) = f(ab) = f(a)f(b).
\]
It follows that \(f(a) \neq 0 \). We now define a function \(\chi : (\mathbb{Z}/N\mathbb{Z})^* \to \mathbb{C}^* \) by \(\chi(a + NZ) = f(a) \) for \(a \in \mathbb{Z} \) with \((a, N) = 1\). By what we have already proven, \(\alpha \) is a well-defined function. It is also clear that \(\chi \) is a homomorphism. Finally, it is evident that the extension of \(\chi \) to \(\mathbb{Z} \) is \(f \), so that \(f \) corresponds to \(\chi \). The uniqueness assertion is clear. \(\square \)

Let \(p \) be an odd prime. For \(m \in \mathbb{Z} \) define the \textbf{Legendre symbol} by
\[
\left(\frac{m}{p} \right) = \begin{cases}
0 & \text{if } p \text{ divides } m, \\
-1 & \text{if } (m, p) = 1 \text{ and } x^2 \equiv m \pmod{p} \text{ has no solution } x \in \mathbb{Z}, \\
1 & \text{if } (m, p) = 1 \text{ and } x^2 \equiv m \pmod{p} \text{ has a solution } x \in \mathbb{Z}.
\end{cases}
\]
The function \((\cdot)^p : \mathbb{Z} \to \mathbb{C}\) satisfies the conditions of Lemma 1.1.1 with \(N = p \). We will also denote the Dirichlet character modulo \(p \) to which \((\cdot)^p\) corresponds by \((\cdot)^p\). We note that \((\cdot)^p\) is \textbf{real valued}, i.e., takes values in \(\{-1, 0, 1\} \).

Let \(\beta \) be a Dirichlet character modulo \(M \). We can construct other Dirichlet characters from \(\beta \) by forgetting information, as follows. Let \(N \) be a positive multiple of \(M \). Since \(M \) divides \(N \), there is a natural surjective homomorphism
\[(\mathbb{Z}/N\mathbb{Z})^* \to (\mathbb{Z}/M\mathbb{Z})^*, \]
and we can form the composition \(\chi \)
\[(\mathbb{Z}/N\mathbb{Z})^* \to (\mathbb{Z}/M\mathbb{Z})^* \overset{\beta}{\longrightarrow} \mathbb{C}^*. \]
Then \(\chi \) is a Dirichlet character modulo \(N \), and we say that \(\chi \) is \textbf{induced} from the Dirichlet character \(\beta \) modulo \(M \). If \(N \) is a positive integer and \(\chi \) is a Dirichlet character modulo \(N \), and \(\chi \) is not induced from any Dirichlet character \(\beta \) modulo \(M \) for a proper divisor \(M \) of \(N \), then we say that \(\chi \) is \textbf{primitive}.

Let \(N \) be a positive integer, and let \(\chi \) be a Dirichlet character. Consider the set of positive integers \(N_1 \) such that \(N_1 | N \) and
\[
\chi(a) = 1
\]
for \(a \in \mathbb{Z} \) such that \((a, N) = 1 \) and \(a \equiv 1 \pmod{N_1} \). This set is non-empty since it contains \(N \); we refer to the smallest such \(N_1 \) as the \textbf{conductor} of \(\chi \) and denote it by \(f(\chi) \).

Lemma 1.1.2. Let \(N \) be positive integer, and let \(\chi \) be a Dirichlet character modulo \(N \). Let \(N_1 \) be a positive integer such that \(N_1 | N \) and \(\chi(a) = 1 \) for \(a \in \mathbb{Z} \) such that \((a, N) = 1 \) and \(a \equiv 1 \pmod{N_1} \). Then \(f(\chi)|N_1 \).
Proof. We may assume that \(N > 1 \). Let \(M = \gcd(f(\chi), N_1) \). We will prove that \(\chi(a) = 1 \) for \(a \in \mathbb{Z} \) such that \((a, N) = 1 \) and \(a \equiv 1 \) (mod \(M \)); by the minimality of \(f(\chi) \) this will imply that \(M = f(\chi) \), so that \(f(\chi)|N_1 \). Let

\[
N = p_1^{e_1} \cdots p_t^{e_t}
\]

be the prime factorization of \(r(\chi) \) into positive powers \(e_1, \ldots, e_t \) of the distinct primes \(p_1, \ldots, p_t \). Also, write

\[
f(\chi) = p_1^{\ell_1} \cdots p_t^{\ell_t}, \quad N_1 = p_1^{k_1} \cdots p_t^{k_t}.
\]

By definition,

\[
M = p_1^{\min(\ell_1, k_1)} \cdots p_t^{\min(\ell_t, k_t)}.
\]

Let \(a \in \mathbb{Z} \) be such that \((a, N) = 1 \) and \(a \equiv 1 \) (mod \(M \)). By the Chinese remainder theorem, there exists an integer \(b \) such that

\[
b = \begin{cases}
1 \pmod{p_i^{\ell_i}} & \text{if } \ell_i \geq k_i, \\
\alpha \pmod{p_i^{k_i}} & \text{if } \ell_i < k_i
\end{cases}
\]

for \(i \in \{1, \ldots, t\} \), and \((b, r(\chi)) = 1 \). Let \(c \) be an integer such that \((c, N) = 1 \) and \(a \equiv bc \) (mod \(N \)). Evidently, \(b \equiv 1 \) (mod \(p_i^{\ell_i} \)) and \(c \equiv 1 \) (mod \(p_i^{k_i} \)) for \(i \in \{1, \ldots, t\} \), so that \(b \equiv 1 \) (mod \(f(\chi) \)) and \(c \equiv 1 \) (mod \(N_1 \)). It follows that \(\chi(a) = \chi(bc) = \chi(b)\chi(c) = 1 \).

\[\square\]

Lemma 1.1.3. Let \(N \) be a positive integer, and let \(\chi \) be a Dirichlet character modulo \(N \). Then \(\chi \) is primitive if and only if \(f(\chi) = N \).

Proof. Assume that \(\chi \) is primitive. By Lemma 1.1.2 \(f(\chi) \) is a divisor of \(N \). By the definition of \(f(\chi) \), the character \(\chi \) is trivial on the kernel of the natural map

\[
\left(\mathbb{Z}/N\mathbb{Z} \right)^{\times} \to \left(\mathbb{Z}/f(\chi)\mathbb{Z} \right)^{\times}.
\]

This implies that \(\chi \) factors through this map. Since \(\chi \) is primitive, \(f(\chi) \) is not a proper divisor of \(N \), so that \(f(\chi) = N \). The converse statement has a similar proof.

\[\square\]

Evidently, the conductor of \(\left(\frac{-}{p} \right) \) is also \(p \), so that \(\left(\frac{-}{p} \right) \) is primitive.

Lemma 1.1.4. Let \(N_1 \) and \(N_2 \) be positive integers, and let \(\chi_1 \) and \(\chi_2 \) be Dirichlet characters modulo \(N_1 \) and \(N_2 \), respectively. Let \(N \) be the least common multiple of \(N_1 \) and \(N_2 \). The function \(f : \mathbb{Z} \to \mathbb{C} \) defined by \(f(a) = \chi_1(a)\chi_2(a) \) for \(a \in \mathbb{Z} \) corresponds to a unique Dirichlet \(\chi \) character modulo \(N \).

Proof. It is clear that \(f \) satisfies properties 1, 2 and 4 of Lemma 1.1.1. To see that \(f \) satisfies property 3, assume that \(a \in \mathbb{Z} \) and \((a, N) > 1 \). We need to prove that \(f(a) = 0 \). There exists a prime \(p \) such that \(p|a \) and \(p|N \). Write \(a = pb \) for some \(b \in \mathbb{Z} \). Since \(f(a) = f(p)f(b) \) it will suffice to prove that \(f(p) = 0 \), i.e., \(\chi_1(p) = 0 \) or \(\chi_2(p) = 0 \). Since \(p|N \), we have \(p|N_1 \) or \(p|N_2 \). This implies that \(\chi_1(p) = 0 \) or \(\chi_2(p) = 0 \).

\[\square\]
Let the notation be as in Lemma 1.1.4. We refer to the Dirichlet character \(\chi \) modulo \(N \) as the \textbf{product} of \(\chi_1 \) and \(\chi_2 \), and we write \(\chi_1 \chi_2 \) for \(\chi \).

Lemma 1.1.5. Let \(N_1 \) and \(N_2 \) be positive integers such that \((N_1, N_2) = 1 \), and let \(\chi_1 \) and \(\chi_2 \) be Dirichlet characters modulo \(N_1 \) and modulo \(N_2 \), respectively. Let \(\chi = \chi_1 \chi_2 \); this is a Dirichlet character modulo \(N = N_1 N_2 \). The conductor of \(\chi \) is \(f(\chi) = f(\chi_1) f(\chi_2) \). Moreover, \(\chi \) is primitive if and only if \(\chi_1 \) and \(\chi_2 \) are primitive.

Proof. By Lemma 1.1.2 we have \(f(\chi_1) | N_1 \) and \(f(\chi_2) | N_2 \). Since \(N = N_1 N_2 \), we obtain \(f(\chi_1)f(\chi_2) | N \). Assume that \(a \in \mathbb{Z} \) is such that \((a, N) = 1 \) and \(a \equiv 1 \pmod{f(\chi_1)f(\chi_2)} \). Then \((a, N_1) = (a, N_2) = 1 \), \(a \equiv 1 \pmod{f(\chi_1)} \), and \(a \equiv 1 \pmod{f(\chi_2)} \). Therefore, \(\chi_1(a) = \chi_2(a) = 1 \), so that \(\chi(a) = \chi_1(a) \chi_2(a) = 1 \).

By Lemma 1.1.2 it follows that we have \(f(\chi) | f(\chi_1) f(\chi_2) \). Write \(f(\chi) = M_1 M_2 \) where \(M_1 \) and \(M_2 \) are relatively prime positive integers such that \(f(\chi_1) | f(M_1)\) and \(f(\chi_2) | f(M_2) \). We need to prove that \(M_1 = f(\chi_1) \) and \(M_2 = f(\chi_2) \). Let \(a \in \mathbb{Z} \) be such that \((a, N_1) = 1 \) and \(a \equiv 1 \pmod{M_1} \). By the Chinese remainder theorem, there exists an integer \(b \) such that \(b \equiv a \pmod{M_1} \), \(b \equiv 1 \pmod{f(\chi_2)} \), and \((b, N) = 1 \). Evidently, \(b \equiv 1 \pmod{f(\chi)} \). Hence, \(1 = \chi(b) = \chi_1(b) \chi_2(b) = \chi_1(a) \). By the minimality of \(f(\chi_1) \) we must now have \(M_1 = f(\chi_1) \). Similarly, \(M_2 = f(\chi_2) \). The final assertion of the lemma is straightforward. \(\square \)

Lemma 1.1.6. Let \(p \) be an odd prime. The Legendre symbol \(\left(\frac{\cdot}{p} \right) \) is the only real valued primitive Dirichlet character modulo \(p \). If \(e \) is a positive integer with \(e > 1 \), then there exist no real valued primitive Dirichlet characters modulo \(p^e \).

Proof. We have already remarked that \(\left(\frac{\cdot}{p} \right) \) is a real valued primitive Dirichlet character modulo \(p \). To prove the remaining assertions, let \(e \) be a positive integer, and assume that \(\chi \) is a real valued primitive Dirichlet character modulo \(p^e \); we will prove that \(\chi = \left(\frac{\cdot}{p} \right) \) if \(e = 1 \) and obtain a contradiction if \(e > 1 \).

Consider \(\mathbb{Z}/p^e \mathbb{Z}^\times \). It is known that this group is cyclic; let \(x \in \mathbb{Z} \) be such that \((x, p) = 1 \) and \(x + p^e \mathbb{Z} \) is a generator of \(\mathbb{Z}/p^e \mathbb{Z}^\times \). Since \(\chi \) has conductor \(p^e \), and since \(x + p^e \mathbb{Z} \) is a generator of \(\mathbb{Z}/p^e \mathbb{Z}^\times \), we must have \(\chi(x) \neq 1 \). Since \(\chi \) is real valued we obtain \(\chi(x) = -1 \). On the other hand, the function \(\left(\frac{\cdot}{p} \right) \) is also a real valued Dirichlet character modulo \(p^e \) such that \(\left(\frac{x}{p} \right) = -1 \) for some \(a \in \mathbb{Z} \); since \(x + p^e \mathbb{Z} \) is a generator of \(\mathbb{Z}/p^e \mathbb{Z}^\times \), this implies that \(\left(\frac{a}{p} \right) = -1 \), so that \(\chi(x) = \left(\frac{x}{p} \right) \). Since \(x + p^e \mathbb{Z} \) is a generator of \(\mathbb{Z}/p^e \mathbb{Z}^\times \) and \(\chi(x) = -1 = \chi'(x) \) we must have \(\chi = \left(\frac{\cdot}{p} \right) \). We see that if \(e = 1 \), then the Legendre symbol \(\left(\frac{\cdot}{p} \right) \) is the only real valued primitive Dirichlet character modulo \(p \). Assume that \(e > 1 \). It is easy to verify that the conductor of the Dirichlet character \(\left(\frac{\cdot}{p} \right) \) modulo \(p^e \) is \(p \); this is a contradiction since by Lemma 1.1.3 the conductor of \(\chi \) is \(p^e \). \(\square \)

Lemma 1.1.7. There are no primitive characters modulo \(2 \). There exists a unique primitive Dirichlet character \(\varepsilon_4 \) modulo \(4 = 2^2 \) which is defined by

\[
\varepsilon_4(1) = 1,
\]

\[
\varepsilon_4(3) = -1.
\]
There exist two primitive Dirichlet characters \(\epsilon'_8 \) and \(\epsilon''_8 \) modulo \(8 = 2^3 \) which are defined by

\[
\begin{align*}
\epsilon'_8(1) &= 1, & \epsilon''_8(1) &= 1, \\
\epsilon'_8(3) &= -1, & \epsilon''_8(3) &= 1, \\
\epsilon'_8(5) &= -1, & \epsilon''_8(5) &= -1, \\
\epsilon'_8(7) &= 1, & \epsilon''_8(7) &= -1.
\end{align*}
\]

There exist no real valued primitive Dirichlet characters modulo \(p^e \) for \(e \geq 4 \).

Proof. We have \((\mathbb{Z}/2\mathbb{Z})^\times = \{1\}\). It follows that the unique Dirichlet character modulo 2 has conductor conductor 1; by Lemma 1.1.3, this character is not primitive.

We have \((\mathbb{Z}/4\mathbb{Z})^\times = \{1, 3\}\). Hence, there exist two Dirichlet characters modulo 4. The non-principal Dirichlet character modulo 4 is \(\epsilon_4 \); since \(\epsilon_4(1+2) = -1 \), it follows that the conductor of \(\epsilon_4 \) is 4. By Lemma 1.1.3, \(\epsilon_4 \) is primitive.

We have \((\mathbb{Z}/8\mathbb{Z})^\times = \{1, 3, 5, 7\} = \{1, 3\} \times \{1, 5\}\) The non-principal Dirichlet characters modulo 8 are \(\epsilon'_8, \epsilon''_8 \) and \(\epsilon'_8 \epsilon''_8 \). Since \(\epsilon'_8(1+4) = \epsilon''_8(1+4) = -1 \) we have \(f(\epsilon'_8) = f(\epsilon''_8) = 8 \). Since \((\epsilon'_8 \epsilon''_8)(1 + 4) = 1 \) we have \(f(\epsilon'_8 \epsilon''_8) = 4 \). Hence, by Lemma 1.1.3, \(\epsilon'_8 \) and \(\epsilon''_8 \) are primitive, and \(\epsilon'_8 \epsilon''_8 \) is not primitive.

Finally, assume that \(e \geq 4 \) and let \(\chi \) be a real valued Dirichlet character modulo \(p^e \). Let \(n \in \mathbb{Z} \) be such that \((n, 2) = 1 \) and \(n \equiv 1 \) (mod 8). It is known that there exists \(a \in \mathbb{Z} \) such that \(n \equiv a^2 \) (mod \(p^e \)). We obtain \(\chi(n) = \chi(a^2) = a^2 \) because \(\chi(a) = \pm 1 \) (since \(\chi \) is real valued). By Lemma 1.1.2 the conductor \(f(\chi) \) divides 8. By Lemma 1.1.3, \(\chi \) is not primitive.

1.2 Fundamental discriminants

Let \(D \) be a non-zero integer. We say that \(D \) is a **fundamental discriminant** if

\[
D \equiv 1 \pmod{4} \text{ and } D \text{ is square-free,}
\]

or

\[
D \equiv 0 \pmod{4}, \ D/4 \text{ is square-free, and } D/4 \equiv 2 \text{ or } 3 \pmod{4}.
\]

We say that \(D \) is a **prime fundamental discriminant** if

\[
D = -8 \text{ or } D = -4 \text{ or } D = 8,
\]

or

\[
D = -p \text{ for } p \text{ a prime such that } p \equiv 3 \pmod{4},
\]

or

\[
D = p \text{ for } p \text{ a prime such that } p \equiv 1 \pmod{4}.
\]
it is clear that if D is a prime fundamental discriminant, then D is a fundamental discriminant.

Lemma 1.2.1. Let D_1 and D_2 be relatively prime fundamental discriminants. Then D_1D_2 is a fundamental discriminant.

Proof. The proof is straightforward. Note that since D_1 and D_2 are relatively prime, at most one of D_1 and D_2 is divisible by 4. □

Lemma 1.2.2. Let D be a fundamental discriminant such that $D \neq 1$. There exist prime fundamental discriminants D_1, \ldots, D_k such that

$$D = D_1 \cdots D_k$$

and D_1, \ldots, D_k are pairwise relatively prime.

Proof. Assume that $D < 0$ and $D \equiv 1 \pmod{4}$. We may write $D = -p_1 \cdots p_t$ for a non-empty collection of distinct primes p_1, \ldots, p_t. Since D is odd, each of p_1, \ldots, p_t is odd and is hence congruent to 1 or 3 mod 4. Let r be the number of the primes p from p_1, \ldots, p_t such that $p \equiv 3 \pmod{4}$. We have

$$1 \equiv D \pmod{4} \equiv (-1)^r 3^r \pmod{4} \equiv 1 \equiv (-1)^{r+1} \pmod{4}.$$

It follows that r is odd. Hence,

$$D = - \prod_{p \in \{p_1, \ldots, p_t\}} p = - \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} -p \right).$$

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case.

Assume that $D < 0$ and $D \equiv 0 \pmod{4}$. If $D = -4$, then D is a prime fundamental discriminant. Assume that $D \neq -4$. We may write $D = -4p_1 \cdots p_t$ for a non-empty collection of distinct primes p_1, \ldots, p_t such that $-p_1 \cdots p_t \equiv 2$ or 3 mod 4. Assume first that $-p_1 \cdots p_t \equiv 2 \pmod{4}$. Then exactly one of p_1, \ldots, p_t is even, say $p_1 = 2$. Let r be the number of the primes p from p_2, \ldots, p_t such that $p \equiv 3 \pmod{4}$. We have

$$D = -4 \prod_{p \in \{p_1, \ldots, p_t\}} p$$

and D_1, \ldots, D_k are pairwise relatively prime.
$$D = -8 \prod_{p \in \{p_2, \ldots, p_t\}} p$$

$$= -8 \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} p \right)$$

$$D = ((-1)^{r+1} 8) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} -p \right).$$

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case. Now assume that $-p_1 \cdots p_t \equiv 3 \pmod{4}$. Then p_1, \ldots, p_t are all odd. Let r be the number of the primes p from p_1, \ldots, p_t such that $p \equiv 3 \pmod{4}$. We have

$$3 \equiv -p_1 \cdots p_t \pmod{4}$$

$$-1 \equiv (-1)^3 r \pmod{4}$$

$$1 \equiv (-1)^r \pmod{4}.$$

It follows that r is even. Hence,

$$D = -4 \prod_{p \in \{p_1, \ldots, p_t\}} p$$

$$= -4 \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} p \right)$$

$$D = (-4) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} -p \right).$$

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.

Assume that $D > 0$ and $D \equiv 1 \pmod{4}$. Since $D \neq 1$ by assumption, we have $D = p_1 \cdots p_t$ for a non-empty collection of distinct odd primes p_1, \ldots, p_t. Let r be the number of the primes p from p_1, \ldots, p_t such that $p \equiv 3 \pmod{4}$. We have

$$1 \equiv D \pmod{4}$$

$$\equiv 3^r \pmod{4}$$

$$1 \equiv (-1)^r \pmod{4}.$$

We see that r is even. Therefore,

$$D = \prod_{p \in \{p_1, \ldots, p_t\}} p$$

$$= \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \pmod{4}} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \pmod{4}} p \right)$$
1.2. FUNDAMENTAL DISCRIMINANTS

\[D = \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \ (\text{mod } 4)} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \ (\text{mod } 4)} -p \right). \]

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.

Finally, assume that \(D > 0 \) and \(D \equiv 0 \ (\text{mod } 4) \). We may write \(D = 4p_1 \cdots p_t \) for a non-empty collection of distinct primes \(p_1, \ldots, p_t \) such that \(p_1 \cdots p_t \equiv 2 \) or \(3 \ (\text{mod } 4) \). Assume first that \(p_1 \cdots p_t \equiv 2 \ (\text{mod } 4) \). Then exactly one of \(p_1, \ldots, p_t \) is even, say \(p_1 = 2 \). Let \(r \) be the number of the primes \(p \) from \(p_2, \ldots, p_t \) such that \(p \equiv 3 \ (\text{mod } 4) \). We have

\[
D = 4 \prod_{p \in \{p_1, \ldots, p_t\}} p
\]

\[
D = 8 \prod_{p \in \{p_2, \ldots, p_t\}} p
= 8 \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 1 \ (\text{mod } 4)} p \right) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 3 \ (\text{mod } 4)} p \right)
\]

\[
D = ((-1)^r 8) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 1 \ (\text{mod } 4)} p \right) \times \left(\prod_{p \in \{p_2, \ldots, p_t\}, \ p \equiv 3 \ (\text{mod } 4)} -p \right).
\]

Each of the factors in the last equation is a prime fundamental discriminant, which proves the lemma in this case. Now assume that \(p_1 \cdots p_t \equiv 3 \ (\text{mod } 4) \). Then \(p_1, \ldots, p_t \) are all odd. Let \(r \) be the number of the primes \(p \) from \(p_1, \ldots, p_t \) such that \(p \equiv 3 \ (\text{mod } 4) \). We have

\[
3 \equiv p_1 \cdots p_t \ (\text{mod } 4)
\]

\[
-1 \equiv 3^r \ (\text{mod } 4)
\]

\[
-1 \equiv (-1)^r \ (\text{mod } 4)
\]

\[
1 \equiv (-1)^{r+1} \ (\text{mod } 4)
\]

It follows that \(r \) is odd. Hence,

\[
D = 4 \prod_{p \in \{p_1, \ldots, p_t\}} p
\]

\[
= 4 \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \ (\text{mod } 4)} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \ (\text{mod } 4)} p \right)
\]

\[
D = (-4) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 1 \ (\text{mod } 4)} p \right) \times \left(\prod_{p \in \{p_1, \ldots, p_t\}, \ p \equiv 3 \ (\text{mod } 4)} -p \right).
\]

Each of the factors in the last equation is a prime fundamental discriminant, proving the lemma in this case.
The fundamental discriminants between -1 and -100 are listed in Table A.1 and the fundamental discriminants between 1 and 100 are listed in Table A.2.

Let D be a fundamental discriminant. We define a function

$$
\chi_D : \mathbb{Z} \rightarrow \mathbb{C}
$$

in the following way. First, let p be a prime. We define

$$
\chi_D(p) = \begin{cases}
\left(\frac{D}{p} \right) & \text{if } p \text{ is odd}, \\
1 & \text{if } p = 2 \text{ and } D \equiv 1 \pmod{8}, \\
-1 & \text{if } p = 2 \text{ and } D \equiv 5 \pmod{8}, \\
0 & \text{if } p = 2 \text{ and } D \equiv 0 \pmod{4}.
\end{cases}
$$

Note that since D is a fundamental discriminant, we have $D \not\equiv 3 \pmod{8}$ and $D \not\equiv 7 \pmod{8}$. If n is a positive integer, and

$$
n = p_1^{e_1} \cdots p_t^{e_t}
$$

is the prime factorization of n, where p_1, \ldots, p_t are primes, then we define

$$
\chi_D(n) = \chi_D(p_1)^{e_1} \cdots \chi_D(p_t)^{e_t}.
$$

This defines $\chi_D(n)$ for all positive integers n. We also define

$$
\chi_D(-n) = \chi_D(-1) \chi_D(n)
$$

for all positive integers n, where we define

$$
\chi_D(-1) = \begin{cases}
1 & \text{if } D > 0, \\
-1 & \text{if } D < 0.
\end{cases}
$$

Finally, we define

$$
\chi_D(0) = \begin{cases}
0 & \text{if } D \not= 1, \\
1 & \text{if } D = 1.
\end{cases}
$$

We note that if $D = 1$, then $\chi_1(a) = 1$ for $a \in \mathbb{Z}$. Thus, χ_1 is the unique Dirichlet character modulo 1 (which has conductor 1, and is thus primitive).

Lemma 1.2.3. Let D_1 and D_2 be relatively prime fundamental discriminants. Then

$$
\chi_{D_1D_2}(a) = \chi_{D_1}(a) \chi_{D_2}(a)
$$

for all $a \in \mathbb{Z}$.

Proof. It is easy to verify that $\chi_{D_1D_2}(p) = \chi_{D_1}(p) \chi_{D_2}(p)$ for all primes p, $\chi_{D_1D_2}(-1) = \chi_{D_1}(-1) \chi_{D_2}(-1)$, and $\chi_{D_1D_2}(0) = 0 = \chi_{D_1}(0) \chi_{D_2}(0)$. The assertion of the lemma now follows from the definitions of χ_{D_1}, χ_{D_2}, and $\chi_{D_1D_2}$ on composite numbers. \qed
Lemma 1.2.4. Let D be a fundamental discriminant. The function χ_D corresponds to a primitive Dirichlet character modulo $|D|$.

Proof. By Lemma 1.2.2 we can write

$$D = D_1 \cdots D_k$$

where D_1, \ldots, D_k are prime fundamental discriminants and D_1, \ldots, D_k are pairwise relatively prime. By Lemma 1.2.3,

$$\chi_D(a) = \chi_{D_1}(a) \cdots \chi_{D_k}(a)$$

for $a \in \mathbb{Z}$. Lemma 1.1.4 and Lemma 1.1.5 now imply that we may assume that D is a prime fundamental discriminant. For the following argument we recall the Dirichlet characters ε_4, ε'_8 and ε''_8 from Lemma 1.1.7.

Assume first that $D = -8$ so that $|D| = 8$. Let p be an odd prime. Then

$$\chi_{-8}(p) = \left(\frac{-8}{p}\right)$$

$$= \left(\frac{-2}{p}\right)^3$$

$$= \left(\frac{-2}{p}\right)$$

$$= \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right)$$

$$= (-1)^\frac{p-1}{2} (-1)^{\frac{p^2-1}{8}}$$

$$= \begin{cases}
1 & \text{if } p \equiv 1, 3 \pmod{8} \\
-1 & \text{if } p \equiv 5, 7 \pmod{8}
\end{cases}$$

Also,

$$\chi_{-8}(2) = 0.$$

We see that $\chi_{-8}(p) = \varepsilon''_8(p)$ for all primes p. Also, $\chi_{-8}(-1) = -1 = \varepsilon''_8(-1)$ and $\chi_{-8}(0) = 0 = \varepsilon''_8(0)$. Since χ_{-8} and ε''_8 are multiplicative, it follows that

$$\chi_{-8} = \varepsilon''_8,$$

so that χ_{-8} corresponds to a primitive Dirichlet character mod $| -8 | = 8$.

Assume that $D = -4$ so that $|D| = 4$. Let p be an odd prime. Then

$$\chi_{-4}(p) = \left(\frac{-4}{p}\right)$$

$$= \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right)^2$$

$$= \left(\frac{-1}{p}\right)$$
\[
\begin{align*}
\ &= (-1)^{\frac{p-1}{2}} \\
\ &= \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\end{align*}
\]

Also, \(\chi_{-4}(2) = 0\), \(\chi_{-4}(-1) = -1\), and \(\chi_{-4}(0) = 0\). We see that \(\chi_{-4}(p) = \varepsilon_4(p)\) for all primes \(p\). Also, \(\chi_{-4}(-1) = -1 = \varepsilon_4(-1)\) and \(\chi_{-4}(0) = 0 = \varepsilon_4(0)\). Since \(\chi_{-4}\) and \(\varepsilon_4\) are multiplicative, it follows that

\[
\chi_{-4} = \varepsilon_4,
\]

so that \(\chi_{-4}\) corresponds to a primitive Dirichlet character mod \(|-4| = 4\).

Assume that \(D = 8\). Let \(p\) be an odd prime. Then

\[
\chi_8(p) = \left(\frac{8}{p}\right) \\
\ &= \left(\frac{2}{p}\right)^3 \\
\ &= \left(\frac{2}{p}\right) \\
\ &= (-1)^{\frac{p^2-1}{8}} \\
\ &= \begin{cases}
1 & \text{if } p \equiv 1, 7 \pmod{8}, \\
-1 & \text{if } p \equiv 3, 5 \pmod{8}.
\end{cases}
\]

Also, \(\chi_8(2) = 0\), \(\chi_8(-1) = 1\), and \(\chi_8(0) = 0\). We see that \(\chi_8(p) = \varepsilon'_8(p)\) for all primes \(p\). Also, \(\chi_8(-1) = 1 = \varepsilon'_8(-1)\) and \(\chi_8(0) = 0 = \varepsilon'_8(0)\). Since \(\chi_8\) and \(\varepsilon'_8\) are multiplicative, it follows that

\[
\chi_8 = \varepsilon'_8,
\]

so that \(\chi_8\) corresponds to a primitive Dirichlet character mod \(|8| = 8\).

Assume that \(D = -q\) for a prime \(q\) such that \(q \equiv 3 \pmod{4}\). Let \(p\) be an odd prime. Then

\[
\chi_D(p) = \left(\frac{-q}{p}\right) \\
\ &= \left(\frac{-1}{p}\right) \left(\frac{q}{p}\right) \\
\ &= (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-1}{2} \frac{q-1}{2}} \left(\frac{p}{q}\right) \\
\ &= (-1)^{\frac{p-1}{2}} \left(\frac{-1}{q}\right)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) \\
\ &= (-1)^{\frac{p-1}{2}} (-1)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) \\
\ &= (-1)^{p-1} \left(\frac{p}{q}\right)
\]
1.2. FUNDAMENTAL DISCRIMINANTS

\[
= \left(\frac{P}{q} \right).
\]

Also,

\[
\chi_D(2) = \begin{cases}
1 & \text{if } -q \equiv 1 \pmod{8}, \\
-1 & \text{if } -q \equiv 5 \pmod{8}
\end{cases}
\]

\[
= \begin{cases}
1 & \text{if } q \equiv 7 \pmod{8}, \\
-1 & \text{if } q \equiv 3 \pmod{8}
\end{cases}
\]

\[
= (-1)^{\frac{q^2-1}{8}}
\]

\[
= \left(\frac{2}{q} \right).
\]

and

\[
\chi_D(-1) = -1
\]

\[
= (-1)^{\frac{q-1}{2}}
\]

\[
= \left(\frac{-1}{q} \right).
\]

Since \(\left(\frac{a}{q} \right)\) and \(\chi_D\) are multiplicative, it follows that \(\left(\frac{a}{q} \right) = \chi_D(a)\) for all \(a \in \mathbb{Z}\). Since \(\left(\frac{a}{q} \right)\) is a primitive Dirichlet character modulo \(q\), it follows that \(\chi_D\) corresponds to a primitive Dirichlet character modulo \(q = | -q| = |D|\).

Assume that \(D = q\) for a prime \(q\) such that \(q \equiv 1 \pmod{4}\). Let \(p\) be an odd prime. Then

\[
\chi_D(p) = \left(\frac{q}{p} \right)
\]

\[
= (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q} \right)
\]

\[
= (-1)^{\frac{p-1}{2} \cdot 2} \left(\frac{p}{q} \right)
\]

\[
= \left(\frac{p}{q} \right).
\]

Also,

\[
\chi_D(2) = \begin{cases}
1 & \text{if } q \equiv 1 \pmod{8}, \\
-1 & \text{if } q \equiv 5 \pmod{8}
\end{cases}
\]

\[
= (-1)^{\frac{q^2-1}{8}}
\]

\[
= \left(\frac{2}{q} \right),
\]

and

\[
\chi_D(-1) = 1
\]
= (-1)^\frac{q-1}{2} = (-\frac{1}{q}).

Since \((\frac{\cdot}{q})\) and \(\chi_D\) are multiplicative, it follows that \((\frac{a}{q}) = \chi_D(a)\) for all \(a \in \mathbb{Z}\). Since \((\frac{\cdot}{q})\) is a primitive Dirichlet character modulo \(q\), it follows that \(\chi_D\) corresponds to a primitive Dirichlet character modulo \(q = |q| = |D|\).

From the proof of Lemma 1.2.4 we see that if \(D\) is a prime fundamental discriminant with \(D > 1\), then

\[
\chi_D = \begin{cases}
\varepsilon_8 & \text{if } D = -8, \\
\varepsilon_4 & \text{if } D = -4, \\
\varepsilon_8' & \text{if } D = 8, \\
(\frac{-}{p}) & \text{if } D = -p \text{ is a prime with } p \equiv 3 \pmod{4}, \\
(\frac{-}{p}) & \text{if } D = p \text{ is a prime with } p \equiv 1 \pmod{4}.
\end{cases}
\]

(1.2)

Proposition 1.2.5. Let \(N\) be a positive integer, and let \(\chi\) be a Dirichlet character modulo \(N\). Assume that \(\chi\) is primitive and real valued (i.e., \(\chi(a) \in \{0, 1, -1\}\) for \(a \in \mathbb{Z}\)). Then there exists a fundamental discriminant \(D\) such that \(|D| = N\) and \(\chi = \chi_D\).

Proof. If \(N = 1\), then \(\chi\) is the unique Dirichlet character modulo 1; we have already remarked that \(\chi_1\) is also the unique Dirichlet character modulo 1. Assume that \(N > 1\). Let

\[N = p_1^{e_1} \cdots p_t^{e_t}\]

be the prime factorization of \(N\) into positive powers \(e_1, \ldots, e_t\) of the distinct primes \(p_1, \ldots, p_t\). We have

\[(\mathbb{Z}/N\mathbb{Z})^\times \sim (\mathbb{Z}/p_1^{e_1}\mathbb{Z})^\times \times \cdots \times (\mathbb{Z}/p_t^{e_t}\mathbb{Z})^\times\]

where the isomorphism sends \(x + NZ\) to \((x + p_1^{e_1}Z, \ldots, x + p_t^{e_t}Z)\) for \(x \in \mathbb{Z}\). Let \(i \in \{1, \ldots, t\}\). Let \(\chi_i\) be the character of \((\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times\) which is the composition

\[(\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times \hookrightarrow (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^\times \times \cdots \times (\mathbb{Z}/p_t^{e_t}\mathbb{Z})^\times \sim (\mathbb{Z}/N\mathbb{Z})^\times \twoheadrightarrow \mathbb{C}^\times,\]

where the first map is inclusion. We have

\[\chi(a) = \chi_1(a) \cdots \chi_t(a)\]

for \(a \in \mathbb{Z}\). By Lemma 1.1.5 the Dirichlet characters \(\chi_1, \ldots, \chi_t\) are primitive. Also, it is clear that \(\chi_1, \ldots, \chi_t\) are all real valued. Again let \(i \in \{1, \ldots, t\}\).
1.3. QUADRATIC EXTENSIONS

Assume first that \(p_i \) is odd. Since \(\chi_i \) is primitive, Lemma 1.1.6 implies that \(e_i = 1 \), and that \(\chi_i = \left(\frac{-1}{p_i} \right) \), the Legendre symbol. By (1.2), \(\chi_i = \chi_{D_i} \), where

\[
D_i = \begin{cases}
 p_i & \text{if } p_i \equiv 1 \pmod{4}, \\
 -p_i & \text{if } p_i \equiv 3 \pmod{4}.
\end{cases}
\]

Evidently, \(|D_i| = p_i^{e_i} \). Next, assume that \(p_i = 2 \). By Lemma 1.1.7 we see that \(e_i = 2 \) or \(e_i = 3 \) with \(\chi_i = \epsilon_4' \) if \(e_i = 2 \), and \(\chi_i = \epsilon_8' \) or \(\epsilon_8'' \) if \(e_i = 3 \). By (1.2), \(\chi_i = \chi_{D_i} \), where

\[
D_i = \begin{cases}
 -4 & \text{if } e_i = 2, \\
 8 & \text{if } e_i = 3 \text{ and } \chi_i = \epsilon_8', \\
 -8 & \text{if } e_i = 3 \text{ and } \chi_i = \epsilon_8''.
\end{cases}
\]

Clearly, \(|D_i| = p_i^{e_i} \). To now complete the proof, we note that by Lemma 1.2.1 the product \(D = D_1 \cdots D_t \) is a fundamental discriminant, and by Lemma 1.2.3 we have \(\chi_D = \chi_{D_1} \cdots \chi_{D_t} \). Since \(\chi_{D_1} \cdots \chi_{D_t} = \chi_1 \cdots \chi_t = \chi \) and \(|D| = N \), this completes the proof. \(\square \)

1.3 Quadratic extensions

Proposition 1.3.1. The map

\[
\{\text{quadratic extensions } K \text{ of } \mathbb{Q}\} \sim \rightarrow \{\text{fundamental discriminants } D, D \neq 1\}
\]

that sends \(K \) to its discriminant \(\text{disc}(K) \) is a well-defined bijection. Let \(K \) be a quadratic extension of \(\mathbb{Q} \), and let \(p \) be a prime. Then the prime factorization of the ideal \((p)\) generated by \(p \) in \(\mathfrak{o}_K \) is given as follows:

\[
(p) = \begin{cases}
 p^2 & \text{if } \chi_D(p) = 0, \\
 p \cdot p' & \text{if } \chi_D(p) = 1, \\
 p & \text{if } \chi_D(p) = -1.
\end{cases}
\]

Here, in the first and third case, \(p \) is the unique prime ideal of \(\mathfrak{o}_K \) lying over \((p)\), and in the second case, \(p \) and \(p' \) are the two distinct prime ideals of \(\mathfrak{o}_K \) lying over \((p)\).

Proof. Let \(K \) be a quadratic extension of \(\mathbb{Q} \). There exists a square-free integer \(d \) such that \(K = \mathbb{Q}(\sqrt{d}) \). Let \(\mathfrak{o}_K \) be the ring of integers of \(K \). It is known that

\[
\mathfrak{o}_K = \begin{cases}
 \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \sqrt{d} & \text{if } d \equiv 2, 3 \pmod{4}, \\
 \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \frac{1 + \sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4}.
\end{cases}
\]
By the definition of \(\text{disc}(K) \), we have
\[
\text{disc}(K) = \begin{cases}
\det \left(\begin{array}{cc}
1 & \sqrt{d} \\
1 & -\sqrt{d}
\end{array} \right)^2 & \text{if } d \equiv 2, 3 \pmod{4}, \\
\det \left(\begin{array}{cc}
1 & 1 + \sqrt{d} \\
1 & 1 - \sqrt{d}
\end{array} \right)^2 & \text{if } d \equiv 1 \pmod{4}.
\end{cases}
\]
\[
= \begin{cases}
4d & \text{if } d \equiv 2, 3 \pmod{4}, \\
d & \text{if } d \equiv 1 \pmod{4}.
\end{cases}
\]

It follows that the map is well-defined, and a bijection. For a proof of the remaining assertion see Satz 1 on page 100 of [19], or Theorem 25 on page 74 of [11].

\[\square\]

Lemma 1.3.2. Let \(D \) be a fundamental discriminant such that \(D \neq 1 \). Let \(K = \mathbb{Q}(\sqrt{D}) \), so that \(K \) is a quadratic extension of \(\mathbb{Q} \). Then \(\text{disc}(K) = D \).

\[\text{Proof.}\] Assume that \(D \equiv 1 \pmod{4} \). Then \(D \) is square-free. From the proof of Proposition 1.3.1 we have \(\text{disc}(K) = D \). Assume that \(D \equiv 0 \pmod{4} \). Then \(K = \mathbb{Q}(\sqrt{D/4}) \), with \(D/4 \) square-free and \(D/4 \equiv 2, 3 \pmod{4} \). From the proof of Proposition 1.3.1 we again obtain \(\text{disc}(K) = 4 \cdot (D/4) = D \).

\[\square\]

1.4 Kronecker Symbol

Let \(\Delta \) be a non-zero integer such that \(\Delta \equiv 0, 1 \) or \(2 \pmod{4} \). We define a function,
\[
\left(\frac{\Delta}{p} \right) : \mathbb{Z} \rightarrow \mathbb{C}
\]
called the **Kronecker symbol**, in the following way. First, let \(p \) be a prime. We define
\[
\left(\frac{\Delta}{p} \right) = \begin{cases}
\left(\Delta \right)_{p} & \text{(Legendre symbol) if } p \text{ is odd}, \\
0 & \text{if } p = 2 \text{ and } D \text{ is even}, \\
1 & \text{if } p = 2 \text{ and } D \equiv 1 \pmod{8}, \\
-1 & \text{if } p = 2 \text{ and } D \equiv 5 \pmod{8}.
\end{cases}
\]

Note that, since by assumption \(\Delta \equiv 0, 1 \) or \(2 \pmod{4} \), the cases \(\Delta \equiv 3 \pmod{8} \) and \(\Delta \equiv 7 \pmod{8} \) do not occur. We see that if \(p \) is a prime, then \(p \mid \Delta \) if and only if \(\left(\frac{\Delta}{p} \right) = 0 \). If \(n \) is a positive integer, and
\[
n = p_{1}^{e_{1}} \cdots p_{i}^{e_{i}}
\]
is the prime factorization of \(n \), where \(p_1, \ldots, p_t \) are primes, then we define
\[
\left(\frac{\Delta}{n} \right) = \left(\frac{\Delta}{p_1} \right)^{e_1} \cdots \left(\frac{\Delta}{p_t} \right)^{e_t}.
\]
This defines \(\left(\frac{\Delta}{n} \right) \) for all positive integers \(n \). We also define
\[
\left(\frac{\Delta}{-n} \right) = \left(\frac{\Delta}{-1} \right) \left(\frac{\Delta}{n} \right)
\]
for all positive integers \(n \), where we define
\[
\left(\frac{\Delta}{-1} \right) = \begin{cases}
1 & \text{if } \Delta > 0, \\
-1 & \text{if } \Delta < 0.
\end{cases}
\]
Finally, we define
\[
\left(\frac{\Delta}{0} \right) = \begin{cases}
0 & \text{if } \Delta \neq 1, \\
1 & \text{if } \Delta = 1.
\end{cases}
\]
We note that if \(\Delta = 1 \), then \(\left(\frac{\Delta}{a} \right) \left(\frac{1}{a} \right) = 1 \) for \(a \in \mathbb{Z} \). Thus, \(\left(\frac{1}{a} \right) \) is the unique Dirichlet character modulo 1. It is straightforward to verify that
\[
\left(\frac{\Delta}{ab} \right) = \left(\frac{\Delta}{a} \right) \left(\frac{\Delta}{b} \right)
\]
for \(a, b \in \mathbb{Z} \). Also, we note that \(\left(\frac{\Delta}{a} \right) = 0 \) if and only if \((a, \Delta) > 1 \).

Lemma 1.4.1. Let \(D \) be a non-zero integer such that \(D \equiv 1 \pmod{4} \) or \(D \equiv 0 \pmod{4} \). There exists a unique fundamental discriminant \(D_{fd} \) and a unique positive integer \(m \) such that
\[
D = m^2 D_{fd}.
\]

Proof. We first prove the existence of \(m \) and \(D_{fd} \). We may write \(D = 2^e a^2 b \), where \(e \) is a positive non-negative integer, \(a \) is a positive integer, and \(b \) is an odd square-free integer.

Assume that \(e = 0 \). Then \(D \equiv 1 \pmod{4} \). Since \(a \) is odd, \(a^2 \equiv 1 \pmod{4} \); therefore, \(b \equiv 1 \pmod{4} \). It follows that \(D = m^2 D_{fd} \) with \(m = a \) and \(D_{fd} = b \) a fundamental discriminant.

The case \(e = 1 \) is impossible because \(D \equiv 1 \pmod{4} \) or \(D \equiv 0 \pmod{4} \).

Assume that \(e \geq 2 \) and \(e \) is odd. Write \(e = 2k + 1 \) for a positive integer \(k \). Then \(D = m^2 D_{fd} \) with \(m = 2^{k-1} a \) and \(D_{fd} = 8b \) a fundamental discriminant.

Assume that \(e \geq 2 \) and \(e \) is even. Write \(e = 2k \) for a positive integer \(k \). If \(b \equiv 1 \pmod{4} \), then \(D = m^2 D_{fd} \) with \(m = 2^k a \) and \(D_{fd} = b \) a fundamental discriminant. If \(b \equiv 3 \pmod{4} \), then \(D = m^2 D_{fd} \) with \(m = 2^{k-1} a \) and \(D_{fd} = 4b \) a fundamental discriminant. This completes the proof the existence of \(m \) and \(D_{fd} \).

To prove the uniqueness assertion, assume that \(m \) and \(m' \) are positive integers and \(D_{fd} \) and \(D'_{fd} \) are fundamental discriminants such that \(D = m^2 D_{fd} = (m')^2 D'_{fd} \). Assume first that \(D_{fd} = 1 \). Then \(m^2 = (m')^2 D'_{fd} \). This implies
that \(D_{fd}' \) is a square; hence, \(D_{fd}' = 1 \). Therefore, \(m^2 = (m')^2 \), implying that \(m = m' \). Now assume that \(D_{fd} \neq 1 \). Then also \(D_{fd}' \neq 1 \), and \(D \) is not a square. Set \(K = \mathbb{Q}(\sqrt{D}) \). We have \(K = \mathbb{Q}(\sqrt{D_{fd}}) = \mathbb{Q}(\sqrt{D_{fd}'}) \). By Lemma 1.3.2, \(\text{disc}(K) = D_{fd} \) and \(\text{disc}(K) = D_{fd}' \), so that \(D_{fd} = D_{fd}' \). Since this holds we also conclude that \(m = m' \).

Proposition 1.4.2. Let \(\Delta \) be a non-zero integer with \(\Delta \equiv 0, 1 \) or \(2 \) (mod 4).

Define
\[
D = \begin{cases}
\Delta & \text{if } \Delta \equiv 0 \text{ or } 1 \text{ (mod 4)}, \\
4\Delta & \text{if } \Delta \equiv 2 \text{ (mod 4)}.
\end{cases}
\]

Write \(D = m^2D_{fd} \) with \(m \) a positive integer, and \(D_{fd} \) a fundamental discriminant, as in Lemma 1.4.1. The Kronecker symbol \((\Delta \cdot \cdot) \) is a Dirichlet character modulo \(|D| \), and is the Dirichlet character induced by the mod \(|D_{fd}| \) Dirichlet character \(\chi_{D_{fd}} \).

Proof. Let \(\alpha \) be the Dirichlet character modulo \(|D| \) induced by \(\chi_{D_{fd}} \). Thus, \(\alpha \) is the composition
\[
(\mathbb{Z}/|D|\mathbb{Z})^\times \longrightarrow (\mathbb{Z}/|D_{fd}|\mathbb{Z})^\times \xrightarrow{\chi_{D_{fd}}} \mathbb{C}^\times,
\]
extended to \(\mathbb{Z} \). Since \(\alpha \) and \((\Delta \cdot \cdot) \) are multiplicative, to prove that \(\alpha = (\Delta \cdot \cdot) \) it will suffice to prove that these two functions agree on all primes, on \(-1\), and on \(0\). Let \(p \) be a prime.

Assume first that \(p \) is odd. If \(p|D \), then also \(p|\Delta \), so that \(\alpha(p) \) and \((\Delta \cdot \cdot) \) evaluated at \(p \) are both 0. Assume that \((p, D) = 1 \). Then also \((p, \Delta) = 1 \). Then
\[
(\Delta \cdot \cdot) \text{ evaluated at } p = \left(\frac{\Delta}{p} \right) \text{ (Legendre symbol)}
\]

\[
= \begin{cases}
\left(\frac{\Delta}{p} \right) & \text{if } \Delta \equiv 0 \text{ or } 1 \text{ (mod 4)}, \\
\left(\frac{2}{p} \right)^2 \left(\frac{\Delta}{p} \right) & \text{if } \Delta \equiv 2 \text{ (mod 4)},
\end{cases}
\]

\[
= \begin{cases}
\left(\frac{\Delta}{p} \right) & \text{if } \Delta \equiv 0 \text{ or } 1 \text{ (mod 4)}, \\
\left(\frac{4\Delta}{p} \right) & \text{if } \Delta \equiv 2 \text{ (mod 4)},
\end{cases}
\]

\[
= \frac{D_{fd}}{p} \frac{D}{p}
\]

\[
= \frac{m^2D_{fd}}{p}
\]

\[
= \frac{D_{fd}}{p}
\]

\[
= \chi_{D_{fd}}(p)
\]

\[
= \alpha(p).
\]
Assume next that \(p = 2 \). If \(2 | D \), then also \(2 | \Delta \), so that \(\alpha(2) \) and \(\left(\frac{\Delta}{2} \right) \) evaluated at 2 are both 0. Assume that \((2, D) = 1 \), so that \(D \) is odd. Then \(D = \Delta \), and in fact \(D \equiv 1 \pmod{4} \). This implies that \(\Delta \equiv 1 \) or 7 \pmod{8}.

Also, as \(D \equiv 1 \pmod{4} \), and \(D = m^2 D_{ld} \), we must have \(D_{ld} \equiv D \pmod{8} \) (since \(a^2 \equiv 1 \pmod{8} \) for any odd integer \(a \)). Therefore,

\[
\left(\frac{\Delta}{2} \right) \text{ evaluated at } 2 = \begin{cases}
1 & \text{if } D \equiv 1 \pmod{8}, \\
-1 & \text{if } D \equiv 5 \pmod{8},
\end{cases}
\]

\[= \begin{cases}
1 & \text{if } D_{ld} \equiv 1 \pmod{8}, \\
-1 & \text{if } D_{ld} \equiv 5 \pmod{8},
\end{cases}
\]

\[= \chi_{D_{ld}}(2) \]

\[= \alpha(2). \]

To finish the proof we note that

\[
\left(\frac{\Delta}{2} \right) \text{ evaluated at } -1 = \text{sign}(\Delta) = \text{sign}(D) = \text{sign}(D_{ld}) = \chi_{D_{ld}}(-1) = \alpha(-1).
\]

Since \(\Delta = 1 \) if and only if \(D_{ld} = 1 \), the evaluation of \(\left(\frac{\Delta}{2} \right) \) at 0 is \(\chi_{D_{ld}}(0) = \alpha(0). \)

Lemma 1.4.3. Assume that \(\Delta_1 \) and \(\Delta_2 \) are non-zero integers that satisfy the congruences \(\Delta_1 \equiv 0, 1 \) or 2 \pmod{4} \) and \(\Delta_2 \equiv 0, 1 \) or 2 \pmod{4} \). Then we have \(\Delta_1 \Delta_2 \equiv 0, 1 \) or 2 \pmod{4} \), and

\[
\left(\frac{\Delta_1}{a} \right) \left(\frac{\Delta_2}{a} \right) = \left(\frac{\Delta_1 \Delta_2}{a} \right)
\]

(1.3)

for all integers \(a \).

Proof. It is easy to verify that \(\Delta_1 \Delta_2 \equiv 0, 1 \) or 2 \pmod{4} \), and that if \(\Delta_1 = 1 \) or \(\Delta_2 = 1 \), then (1.3) holds. Assume that \(\Delta_1 \neq 1 \) and \(\Delta_2 \neq 1 \). Since \(\left(\frac{\Delta_1}{a} \right), \left(\frac{\Delta_2}{a} \right), \) and \(\left(\frac{\Delta_1 \Delta_2}{a} \right) \) are multiplicative, it suffices to verify (1.3) for all odd primes, for 2, \(-1\) and 0. These cases follows from the definitions. \(\square \)

1.5 Quadratic forms

Let \(f \) be a positive integer, which will be fixed for the remainder of this section. In this section we regard the elements of \(\mathbb{Z}^f \) as column vectors.

Let \(A = (a_{ij}) \in \mathbb{M}(f, \mathbb{Z}) \) be a integral symmetric matrix, so that \(a_{i,j} = a_{j,i} \) for \(i, j \in \{1, \ldots, f\} \). We say that \(A \) is **even** if each diagonal entry \(a_{i,i} \) for \(i \in \{1, \ldots, f\} \) is an even integer.
Lemma 1.5.1. Let $A \in M(f, \mathbb{Z})$, and assume that A is symmetric. Then A is even if and only if $^t y A y$ is an even integer for all $y \in \mathbb{Z}^f$.

Proof. Let $y \in \mathbb{Z}^f$, with $^t y = (y_1, \ldots, y_f)$. Then

$$^t y A y = \sum_{i,j=1}^{n} a_{i,j} y_i y_j$$

$$= \sum_{i=1}^{f} a_{i,i} y_i^2 + \sum_{1 \leq i < j \leq f} 2a_{i,j} y_i y_j.$$

It is clear that if A is even, then $^t y A y$ is an even integer for all $y \in \mathbb{Z}^f$. Assume that $^t y A y$ is an even integer for all $y \in \mathbb{Z}^f$. Let $i \in \{1, \ldots, f\}$. Let $y_i \in \mathbb{Z}^f$ be defined by

$$^t y_i = (0, \ldots, 0, 1, 0, \ldots, 0)$$

where 1 occurs in the i-th position. Then $^t y_i A y_i = a_{i,i}$. This is even, as required.

Suppose that A is an even integral symmetric matrix. To A we associate the polynomial

$$Q(x_1, \ldots, x_f) = \frac{1}{2} \sum_{i,j=1}^{f} a_{i,j} x_i x_j,$$

and we refer to $Q(x_1, \ldots, x_f)$ as the quadratic form determined by A. Evidently,

$$Q(x) = \frac{1}{2} ^t x A x$$

with

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_f \end{bmatrix}.$$

Since $a_{i,i}$ is even for $i \in \{1, \ldots, f\}$, the quadratic form $Q(x)$ can also be written as

$$Q(x_1, \ldots, x_f) = \sum_{1 \leq i \leq j \leq f} b_{i,j} x_i x_j$$

where

$$b_{i,j} = \begin{cases} a_{i,j} & \text{for } 1 \leq i < j \leq f, \\ a_{i,i}/2 & \text{for } 1 \leq i \leq f. \end{cases}$$

We denote the determinant of A by

$$D = D(A) = \det(A).$$
and the **discriminant** of A by

$$\Delta = \Delta(A) = (-1)^k \det(A), \quad f = \begin{cases} 2k & \text{if } f \text{ is even}, \\ 2k + 1 & \text{if } f \text{ is odd.} \end{cases}$$

For example, suppose that $f = 2$. Then every even integral symmetric matrix has the form

$$A = \begin{bmatrix} 2a & b \\ b & 2c \end{bmatrix}$$

where a, b and c are integers, and the associated quadratic form is:

$$Q(x_1, x_2) = ax_1^2 + bx_1x_2 + cx_2^2.$$

For this example we have

$$D = 4ac - b^2, \quad \Delta = b^2 - 4ac.$$

Lemma 1.5.2. Let $A \in M(f, \mathbb{Z})$ be an even integral symmetric matrix, and let $D = D(A)$ and $\Delta = \Delta(A)$. If f is odd, then $\Delta \equiv D \equiv 0 \pmod{2}$. If f is even, then $\Delta \equiv 0, 1 \pmod{4}$.

Proof. Let $A = (a_{i,j})$ with $a_{i,j} \in \mathbb{Z}$ for $i, j \in \{1, \ldots, f\}$. By assumption, $a_{i,j} = a_{j,i}$ and $a_{i,i}$ is even for $i, j \in \{1, \ldots, f\}$.

Assume that f is odd. For $\sigma \in S_f$ (the permutation group of $\{1, \ldots, f\}$, let

$$t(\sigma) = \sign(\sigma)a_{1,\sigma(1)} \cdots a_{f,\sigma(f)} = \sign(\sigma) \prod_{i \in \{1, \ldots, n\}} a_{i,\sigma(i)}$$

We have

$$\det(A) = \sum_{\sigma \in S_f} t(\sigma)$$

$$= \sum_{\sigma \in X} t(\sigma) + \sum_{\sigma \in S_f - X} t(\sigma).$$

Here, X is the subset of $\sigma \in S_f$ such that $\sigma \neq \sigma^{-1}$. Let $\sigma \in S_f$. Then

$$t(\sigma^{-1}) = \sign(\sigma^{-1}) \prod_{i \in \{1, \ldots, f\}} a_{i,\sigma^{-1}(i)}$$

$$= \sign(\sigma) \prod_{i \in \{1, \ldots, f\}} a_{\sigma(i),\sigma^{-1}(\sigma(i))}$$

$$= \sign(\sigma) \prod_{i \in \{1, \ldots, f\}} a_{\sigma(i),i}$$

$$= \sign(\sigma) \prod_{i \in \{1, \ldots, f\}} a_{i,\sigma(i)}$$
CHAPTER 1. BACKGROUND

\[t(\sigma) \]

Since the subset \(X \) is partitioned into two element subsets of the form \(\{\sigma, \sigma^{-1}\} \) for \(\sigma \in X \), and since \(t(\sigma) = t(\sigma^{-1}) \) for \(\sigma \in S_f \), it follows that

\[\sum_{\sigma \in X} t(\sigma) \equiv 0 \pmod{2}. \]

Let \(\sigma \in S_f - X \), so that \(\sigma^2 = 1. \) Write \(\sigma = \sigma_1 \cdots \sigma_t \), where \(\sigma_1, \ldots, \sigma_t \in S_f \) are cycles and mutually disjoint. Since \(\sigma^2 = 1 \), each \(\sigma_i \) for \(i \in \{1, \ldots, t\} \) is a two cycle. Since \(f \) is odd, there exists \(i \in \{1, \ldots, f\} \) such that \(i \) does not occur in any of the two cycles \(\sigma_1, \ldots, \sigma_t \). It follows that \(\sigma(i) = i \). Now \(a_{i,\sigma(i)} = a_{i,i} \); by hypothesis, this is an even integer. It follows that \(t(\sigma) \) is also an even integer. Hence,

\[\sum_{\sigma \in S_f - X} t(\sigma) \equiv 0 \pmod{2}, \]

and we conclude that \(\Delta \equiv D \equiv 0 \pmod{2} \).

Now assume that \(f \) is even, and write \(f = 2k \). We will prove that \(\Delta \equiv 0, 1 \pmod{4} \) by induction on \(f \). Assume that \(f = 2 \), so that

\[A = \begin{bmatrix} 2a & b \\ b & 2c \end{bmatrix} \]

where \(a, b \) and \(c \) are integers. Then \(\Delta = b^2 - 4ac \equiv 0, 1 \pmod{4} \). Assume now that \(f \geq 4 \), and that \(\Delta(A_1) \equiv 0, 1 \pmod{4} \) for all \(f_1 \times f_1 \) even integral symmetric matrices \(A_1 \) with \(f_1 \) even and \(f > f_1 \geq 2 \). Clearly, if all the off-diagonal entries of \(A \) are even, then all the entries of \(A \) are even, and \(\Delta(A) \equiv 0 \pmod{4} \). Assume that some off-diagonal entry of \(A \), say \(a = a_{i,j} \) is odd with \(1 \leq i < j \leq f \). Interchange the first and the \(i \)-th row of \(A \), and then the first and the \(i \)-th column of \(A \); the result is an even integral symmetric matrix \(A' \) with \(a \) in the \((1,j)\) position and \(\det(A') = \det(A) \). Next, interchange the second and the \(j \)-th column of \(A' \), and then the second and the \(j \)-th row of \(A' \); the result is an even integral symmetric matrix \(A'' \) with \(a \) in the \((1,2)\)-position and \(\det(A'') = \det(A') = \det(A) \). It follows that we may assume that \((i,j) = (1,2)\). We may write

\[A = \begin{bmatrix} A_1 & B \\ tB & A_2 \end{bmatrix}, \]

where \(A_2 \) is an \((f-2) \times (f-2)\) even integral symmetric matrix,

\[A_1 = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{1,2} & a_{2,2} \end{bmatrix}, \]

and \(B \) is a \(2 \times (f-2) \) matrix with integral entries. Let

\[\text{adj}(A_1) = \begin{bmatrix} a_{2,2} & -a_{1,2} \\ -a_{1,2} & a_{1,1} \end{bmatrix}, \]
so that
\[A_1 \cdot \text{adj}(A_1) = \text{adj}(A_1) \cdot A_1 = \det(A_1) \cdot 1_2. \]

Now
\[
\begin{bmatrix}
1_2 \\
-^t B \cdot \text{adj}(A_1) & \det(A_1) \cdot 1_{f-2}
\end{bmatrix}
\begin{bmatrix}
A_1 & B \\
^t B & A_2
\end{bmatrix}
=
\begin{bmatrix}
A_1 & B \\
-^t B \cdot \text{adj}(A_1) \cdot B + \det(A_1)A_2
\end{bmatrix}.
\] (1.4)

Consider the \((f - 2) \times (f - 2)\) matrix \(-^t B \cdot \text{adj}(A_1) \cdot B\). This matrix clearly has integral entries. If \(y \in \mathbb{Z}^{f-2}\), then \(B y \in \mathbb{Z}^{f-2}\) and
\[
^t(y)(-^t B \cdot \text{adj}(A_1) \cdot B)y = -^t(By) \cdot \text{adj}(A_1) \cdot (By);
\]
since \(\text{adj}(A_1)\) is even, by Lemma 1.5.1 this integer is even. Since the last displayed integer is even for all \(y \in \mathbb{Z}^{f-2}\), we can apply Lemma 1.5.1 again to conclude that \(-^t B \cdot \text{adj}(A_1) \cdot B\) is even. It follows that
\[
A_3 = -^t B \cdot \text{adj}(A_1) \cdot B + \det(A_1)A_2
\]
is an \((f - 2) \times (f - 2)\) even integral symmetric matrix. Taking determinants of both sides of (1.4), we obtain
\[
\det(A_1)^{f-2} \cdot \det(A) = \det(A_1) \cdot \det(A_3),
\]
\[
\det(A_1)^{f-2} \cdot (-1)^k \det(A) = (-1) \det(A_1) \cdot (-1)^{k-1} \det(A_3),
\]
\[
\det(A_1)^{f-2} \cdot \Delta(A) = \Delta(A_1) \cdot \Delta(A_3).
\]

By the induction hypothesis, \(\Delta(A_1) \equiv 0, 1 \pmod{4}\), and \(\Delta(A_3) \equiv 0, 1 \pmod{4}\). Hence,
\[
\det(A_1)^{f-2} \cdot \Delta(A) \equiv 0, 1 \pmod{4}.
\]
By hypothesis, \(a_{1,2}\) is odd; since \(f - 2\) is even, this implies that \(\det(A_1)^{f-2} \equiv 1 \pmod{4}\). We now conclude that \(\Delta(A) \equiv 0, 1 \pmod{4}\), as desired.

Let \(A \in \text{M}(f, \mathbb{R})\). The \textbf{adjoint} of \(A\) is the \(f \times f\) matrix \(\text{adj}(A)\) with entries
\[
\text{adj}(A)_{i,j} = (-1)^{i+j} \det(A(j|i))
\]
for \(i, j \in \{1, \ldots, n\}\). Here, for \(i, j \in \{1, \ldots, n\}\), \(A(j|i)\) is the \((f - 1) \times (f - 1)\) matrix that is obtained from \(A\) by deleting the \(j\)-th row and the \(i\)-th column. For example, if
\[
A = \begin{bmatrix}
a & b \\
c & d
\end{bmatrix},
\]
then
\[
\text{adj}(A) = \begin{bmatrix}
d & -b \\
-c & a
\end{bmatrix}.
\]
CHAPTER 1. BACKGROUND

We have

$$\text{adj}(A) \cdot A = A \cdot \text{adj}(A) = \det(A) \cdot 1_f.$$

Thus,

$$A = \det(A)\text{adj}(A)^{-1},$$

$$\text{adj}(A) = \det(A) \cdot A^{-1},$$

$$A^{-1} = \det(A)^{-1} \cdot \text{adj}(A),$$

$$\text{adj}(A)^{-1} = \det(A)^{-1} \cdot A,$$

$$\det(\text{adj}(A)) = \det(\det(A)^{f-1}).$$

Assume further that A is symmetric. We say that A is positive-definite if the following two conditions hold:

1. If $x \in \mathbb{R}^f$, then $Q(x) = {}^txAx \geq 0$;
2. if $x \in \mathbb{R}^f$ and $Q(x) = {}^txAx = 0$, then $x = 0$.

Since A is symmetric with real entries, there exists a matrix $T \in \text{GL}(f, \mathbb{R})$ such that

$${}^tTT = T^tT = 1$$ (so that $T^{-1} = {}^tT$) and

$$^tTAT = T^{-1}AT,$$ (1.5)

for some $\lambda_1, \ldots, \lambda_f \in \mathbb{R}$ (see the corollary on p. 314 of [5]). The symmetric matrix A is positive-definite if and only if $\lambda_1, \ldots, \lambda_f$ are all positive. This implies that if A is positive-definite, then $\det(A) > 0$. Assume that A is positive-definite, and that T and $\lambda_1, \ldots, \lambda_f$ are in (1.5); in particular, $\lambda_1, \ldots, \lambda_f$ are all positive real numbers. Let

$$B = T \begin{bmatrix} \sqrt{\lambda_1} & \sqrt{\lambda_2} \\ \sqrt{\lambda_3} & \sqrt{\lambda_4} \\ \vdots & \vdots \\ \sqrt{\lambda_f} \end{bmatrix} T^{-1}. \quad (1.6)$$

The matrix B is evidently symmetric and positive-definite, and we have

$$A = {}^tBB = BB = B^2. \quad (1.7)$$

Lemma 1.5.3. Assume f is even. Let $A \in M(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix. The matrix $\text{adj}(A)$ is a positive-definite even integral symmetric matrix.
Proof. We have \(\operatorname{adj}(A) = \det(A) \cdot A^{-1} \). Therefore, \(^t \operatorname{adj}(A) = \det(A) \cdot (A^{-1})^t = \det(A) \cdot (A^t)^{-1} = \det(A) \cdot A^{-1} = \operatorname{adj}(A) \), so that \(\operatorname{adj}(A) \) is symmetric. To see that \(\operatorname{adj}(A) \) is positive-definite, let \(T \in \text{GL}(f, \mathbb{R}) \) and \(\lambda_1, \ldots, \lambda_f \) be positive real numbers such that (1.5) holds. Then

\[
^t(T)\operatorname{adj}(A)^T = \det(A) \cdot TA^{-1}T\]

This equality implies that \(\operatorname{adj}(A) \) is positive-definite. It is clear that \(\operatorname{adj}(A) \) has integral entries. To see that \(\operatorname{adj}(A) \) is even, let \(i \in \{1, \ldots, f\} \). Then \(\operatorname{adj}(A)_{i,i} = \det(A_{i|i}) \). The matrix \(A_{i|i} \) is an \((f - 1) \times (f - 1) \) even integral symmetric matrix. Since \(f - 1 \) is odd, by Lemma 1.5.2 we have \(\det(A_{i|i}) \equiv 0 \pmod{2} \).

Thus, \(\operatorname{adj}(A)_{i,i} \) is even.

Let \(A \in \text{M}(f, \mathbb{Z}) \) be an even integral symmetric matrix with \(\det(A) \) non-zero. The set of all integers \(N \) such that \(NA^{-1} \) is an even integral symmetric matrix is an ideal of \(\mathbb{Z} \). We define the level of \(A \), and its associated quadratic form, to be the unique positive generator \(N(A) \) of this ideal. Evidently, the level \(N(A) \) of \(A \) is smallest positive integer \(N \) such that \(NA^{-1} \) is an even integral symmetric matrix.

Proposition 1.5.4. Assume \(f \) is even. Let \(A \in \text{M}(f, \mathbb{Z}) \) be a positive-definite even integral symmetric matrix. Define

\[
G = \gcd\left(\begin{array}{cccc}
\frac{\operatorname{adj}(A)_{1,1}}{2} & \operatorname{adj}(A)_{1,2} & \operatorname{adj}(A)_{1,3} & \cdots & \operatorname{adj}(A)_{1,f} \\
\operatorname{adj}(A)_{1,2} & \frac{\operatorname{adj}(A)_{2,2}}{2} & \operatorname{adj}(A)_{2,3} & \cdots & \operatorname{adj}(A)_{2,f} \\
\operatorname{adj}(A)_{1,3} & \operatorname{adj}(A)_{2,3} & \frac{\operatorname{adj}(A)_{3,3}}{2} & \cdots & \operatorname{adj}(A)_{3,f} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\operatorname{adj}(A)_{1,f} & \operatorname{adj}(A)_{2,f} & \operatorname{adj}(A)_{3,f} & \cdots & \frac{\operatorname{adj}(A)_{f,f}}{2}
\end{array}\right)
\]

Then \(G \) divides \(\det(A) \), and the level of \(A \) is

\[
N = \frac{\det(A)}{G}.
\]

The positive integers \(N \) and \(\det(A) \) have the same set of prime divisors.

Proof. The integer \(G \) divides every entry of \(\operatorname{adj}(A) \). Therefore, \(G^f \) divides \(\det(\operatorname{adj}(A)) \). Since \(\det(\operatorname{adj}(A)) = \det(A)^{f-1} \), \(G^f \) divides \(\det(A)^{f-1} \). This
implies that G divides $\det(A)$. Now by definition, G is the largest integer g such that
\[
\frac{1}{g} \text{adj}(A) \text{ is even.}
\]
Since $\text{adj}(A) = \det(A) A^{-1}$, we therefore have that
\[
\frac{\det(A)}{G} A^{-1} \text{ is even.}
\]
This implies that $\det(A) G^{-1}$ is in the ideal generated by the level N of A, i.e., N divides $\det(A) G^{-1}$; consequently,
\[
GN \leq \det(A).
\]
On the other hand, NA^{-1} is even. Using $A^{-1} = \det(A)^{-1} \text{adj}(A)$, this is equivalent to
\[
\frac{1}{\det(A) N^{-1} \text{adj}(A)} \text{ is even.}
\]
Since $\det(A) N^{-1}$ is a positive integer (we have already proven that N divides $\det(A)$), the definition of G implies that $G \geq \det(A) N^{-1}$, or equivalently,
\[
GN \geq \det(A).
\]
We now conclude that $GN = \det(A)$, as desired.

To see that N and $\det(A)$ have the same set of prime divisors, we first note that (since N divides $\det(A)$) every prime divisor of N is a prime divisor of $\det(A)$. Let p be a prime divisor of $\det(A)$. If p does not divide G, then p divides N (because $NG = \det(A)$). Assume that p divides G. Write $\det(A) = p^j d$ and $G = p^k g$ with k and j positive integers and d and g integers such that $(d, p) = (g, p) = 1$. From above, G^j divides $\det(A)^{j-1}$. This implies that $(f-1)j \geq fk$. Therefore,
\[
j \geq \frac{f}{f-1} k > k.
\]
This means that p divides $N = \det(A)/G$.

Corollary 1.5.5. Let A be a 2×2 even integral symmetric matrix, so that
\[
A = \begin{bmatrix} 2a & b \\ b & 2c \end{bmatrix}
\]
where a, b and c are integers. Then A is positive-definite if and only if $\det(A) = 4ac - b^2 > 0$, $a > 0$, and $c > 0$. Assume that A is positive-definite. The level of A is
\[
N = \frac{4ac - b^2}{\gcd(a, b, c)}.
\]
Proof. Assume that A is positive-definite. We have already pointed out that $\det(A) > 0$. Now

$$Q(1, 0) = \frac{1}{2} \begin{bmatrix} 1 & 2a & b \\ 0 & b & 2c \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a,$$

$$Q(0, 1) = \frac{1}{2} \begin{bmatrix} 2a & b \\ 1 & 2c \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = c.$$

Since A is positive-definite, these numbers are positive. Assume that $\det(A) = 4ac - b^2 > 0$, $a > 0$, and $c > 0$. For $x, y \in \mathbb{R}$ we have

$$Q(x, y) = ax^2 + bxy + cy^2$$

$$= \frac{1}{a} (ax + \frac{b}{2} y)^2 + \frac{4ac - b^2}{4a} y^2$$

$$= \frac{1}{a} (ax + \frac{b}{2} y)^2 + \frac{\det(A)}{4a} y^2.$$

Clearly, we have $Q(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. Assume that $x, y \in \mathbb{R}$ are such that $Q(x, y) = 0$. Then since $\det(A) > 0$ and $a > 0$ we must have $ax + \frac{b}{2} y = 0$ and $y = 0$; hence also $x = 0$. It follows that A is positive-definite. The final assertion follows from

$$\text{adj}(A) = \begin{bmatrix} 2a & -b \\ -c & 2a \end{bmatrix}$$

and Proposition 1.5.4. \qed

Corollary 1.5.6. Let f be an even positive integer, let $A \in M(f, \mathbb{Z})$ be a positive-definite even integral symmetric matrix and let N be the level of A. Let c be a positive integer. Then the level of the positive-definite even integral symmetric matrix cA is cN.

Proof. This follows from the formula for level from Proposition 1.5.4. \qed

1.6 The upper half-plane

Let $\text{GL}(2, \mathbb{R})^+$ be the subgroup of $\sigma \in \text{GL}(2, \mathbb{R})$ such that $\det(\sigma) > 0$. We define and action of $\text{GL}(2, \mathbb{R})^+$ on the upper half-plane \mathbb{H}_1 by

$$\sigma \cdot z = \frac{az + b}{cz + d}$$

for $z \in \mathbb{H}_1$ and $\sigma \in \text{GL}(2, \mathbb{R})^+$ such that

$$\sigma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

(1.8)

We define the cocycle function

$$j : \text{GL}(2, \mathbb{R})^+ \times \mathbb{H}_1 \rightarrow \mathbb{C}$$
by
\[j(\sigma, z) = cz + d \]
for \(z \in \mathbb{H}_1 \) and \(\sigma \in \text{GL}(2, \mathbb{R})^+ \) as in (1.8). We have
\[j(\alpha \beta, z) = j(\alpha, \beta \cdot z) j(\beta, z) \]
for \(\alpha, \beta \in \text{GL}(2, \mathbb{R})^+ \) and \(z \in \mathbb{H}_1 \). Let \(F : \mathbb{H}_1 \to \mathbb{C} \) be a function, and let \(\ell \) be an integer. Let \(\sigma \in \text{GL}(2, \mathbb{R})^+ \). We define
\[F|_\ell : \mathbb{H}_1 \to \mathbb{C} \]
by the formula
\[
(F|_\ell \sigma)(z) = \det(\sigma)^{\ell/2} (cz + d)^{-\ell} F \left(\frac{az + b}{cz + d} \right) = \det(\sigma)^{\ell/2} j(\sigma, z)^{-\ell} F(\sigma \cdot z)
\]
for \(z \in \mathbb{H}_1 \). We have
\[
(F|_\ell \alpha)|_{\ell \beta} = F|_\ell (\alpha \beta)
\]
for \(\alpha, \beta \in \text{GL}(2, \mathbb{R})^+ \).
Chapter 2

Theta series on the upper half-plane

2.1 Definition and convergence

Lemma 2.1.1. Let f be a positive integer. Let $A \in \text{M}(f, \mathbb{R})$ be a positive-definite symmetric matrix, and for $x \in \mathbb{R}^f$ let

$$Q(x) = \frac{1}{2} x A x.$$

For $z \in \mathbb{H}_1$, define

$$\theta(A, z) = \sum_{m \in \mathbb{Z}^f} e^{\pi i z^t m A m} = \sum_{m \in \mathbb{Z}^f} e^{2\pi i z Q(m)}$$

For every $\delta > 0$, this series converges absolutely and uniformly on the set

$$\{ z \in \mathbb{H}_1 : \text{Im}(z) \geq \delta \}.$$

The function $\theta(A, \cdot)$ is an analytic function on \mathbb{H}_1.

Proof. Since A is positive-definite, the function defined by $x \mapsto \sqrt{Q(x)}$ defines a norm on \mathbb{R}^f. All norms on \mathbb{R}^f equivalent; in particular, this norm is equivalent to the standard norm $\| \cdot \|$ on \mathbb{R}^f. Hence, there exists $\epsilon > 0$ such that

$$\epsilon \|x\| \leq \sqrt{Q(x)},$$

or equivalently,

$$\epsilon^2 \|x\|^2 = \epsilon^2 (x_1^2 + \cdots + x_f^2) \leq Q(x)$$

for $x = (x_1, \ldots, x_f) \in \mathbb{R}^f$.

Now let $\delta > 0$, and let $z \in \mathbb{H}_1$ be such that $\text{Im}(z) \geq \delta$. Let $m = (m_1, \ldots, m_f) \in \mathbb{Z}^f$. Then

$$|e^{2\pi i z Q(m)}| = e^{-2\pi \text{Im}(z) Q(m)}$$
\[\leq e^{-2\pi \delta Q(m)} \]
\[= q^{\|m\|^2} \]
\[= q^{m_1^2 + \cdots + m_f}. \]

where \(q = e^{-2\pi \delta \varepsilon^2} \). Since \(0 < q < 1 \), the series
\[\sum_{n \in \mathbb{Z}} q^{n^2} \]
converges absolutely. This implies that the series
\[(\sum_{n \in \mathbb{Z}} q^{n^2})^f = \sum_{m \in \mathbb{Z}^f} q^{m_1^2 + \cdots + m_f} = \sum_{m \in \mathbb{Z}^f} q^{\|m\|^2} \]
converges absolutely. It follows from the Weierstrass M-test that our series
\[\sum_{m \in \mathbb{Z}^f} e^{2\pi izQ(m)} \]
converges absolutely and uniformly on \(\{ z \in \mathbb{H}_1 : \text{Im}(z) \geq \delta \} \) (see, for example, [12], p. 160). Since for each \(m \in \mathbb{Z}^f \) the function on \(\mathbb{H}_1 \) defined by \(z \mapsto e^{2\pi izQ(m)} \) is an analytic function, and since our series converges absolutely and uniformly on every closed disk in \(\mathbb{H}_1 \), it follows that \(\theta(A, \cdot) \) is analytic on \(\mathbb{H}_1 \) (see [12], p. 162).

Proposition 2.1.2. Let \(f \) be a positive integer. Let \(\varepsilon \) be a real number such that \(0 < \varepsilon < 1 \). Let \(K_1 \) be a compact subset of \(\mathbb{H}_1 \), and let \(K_2 \) be a compact subset of \(\mathbb{C}^f \). Then there exists a positive real number \(R > 0 \) such that
\[\text{Im}(z \cdot ^t(w + g)(w + g)) \geq \varepsilon \text{Im}(z \cdot ^tg), \]
or equivalently
\[-\text{Im}(z \cdot ^t(w + g)(w + g)) \leq -\varepsilon \text{Im}(z \cdot ^tgg), \]
for \(z \in K_1, w \in K_2 \) and \(g \in \mathbb{R}^f \) such that \(\|g\| \geq R \).

Proof. Let \(M > 0 \) be a positive real number such that
\[M \geq |\text{Re}(z)|, |\text{Im}(z)|, |\text{Re}(w)|, |\text{Im}(w)| \]
for \(z \in K_1 \) and \(w \in K_2 \). Let \(\delta > 0 \) be such that
\[\text{Im}(z) \geq \delta > 0 \]
for \(z \in K_1 \). Let \(R > 0 \) be such that if \(x \in \mathbb{R} \) and \(x \geq R \), then
\[0 \leq (1 - \varepsilon)\delta x^2 - 4M^2 x - 4M^3, \]
or equivalently,
\[4M^2(x + M) \leq (1 - \varepsilon)\delta x^2. \]
Now let \(z \in K_1, w \in K_2, \) and let \(g \in \mathbb{R}^f \) with \(\|g\| \geq R. \) Write \(z = \sigma + it \) for some \(\sigma, t \in \mathbb{R} \) with \(t > 0. \) Also, write \(w = a + bi \) with \(a, b \in \mathbb{R}^f. \) Then calculations show that
\[
2 \cdot \text{Im}(z^1wg) = 2t^1ag + 2\sigma^1bg,
\]
\[
\text{Im}(z^1ww) = \sigma^1(aa - bb) - 2t^1ab.
\]
It follows that
\[
-2 \cdot \text{Im}(z^1wg) - \text{Im}(z^1ww) \\
\leq |2 \cdot \text{Im}(z^1wg) + \text{Im}(z^1ww)| \\
\leq 2t^1ag + 2|\sigma^1bg| + |\sigma^1aa| + |\sigma^1bb| + 2t^1|ab| \\
\leq 2t\|a\||\|g\| + 2|\sigma||b\|\|g\| + |\sigma|\|a\|^2 + |\sigma|\|b\|^2 + 2t\|a\||\|b\| \\
\leq 2M^2\|g\| + 2M^2\|g\| + M^3 + M^3 + 2M^3 \\
= 4M^2\|g\| + 4M^3 \\
= 4M^2(\|g\| + M) \\
\leq (1 - \varepsilon)\delta \|g\|^2 \\
\leq (1 - \varepsilon)t\|g\|^2 \\
= (1 - \varepsilon)\text{Im}(z \cdot g^1g).
\]
Therefore,
\[
-2 \cdot \text{Im}(z^1wg) - \text{Im}(z^1ww) \leq (1 - \varepsilon)\text{Im}(z \cdot g^1g) \\
\varepsilon \text{Im}(z \cdot g^1g) \leq \text{Im}(z \cdot g^1g) + 2 \cdot \text{Im}(z^1wg) + \text{Im}(z^1ww) \\
\varepsilon \text{Im}(z \cdot g^1g) \leq \text{Im}(z \cdot (w + g)(w + g)).
\]
This is the desired inequality. \(\square \)

Corollary 2.1.3. Let \(f \) be a positive integer. Let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix. Let \(\varepsilon \) be real number such that \(0 < \varepsilon < 1. \) Let \(K_1 \) be a compact subset of \(\mathbb{H}_1, \) and let \(K_2 \) be a compact subset of \(\mathbb{C}^f. \) For \(x \in \mathbb{C}^f, \)
define
\[
Q(x) = \frac{1}{2} x^1Ax.
\]
Then there exists a positive real number \(R > 0 \) such that
\[
\text{Im}(z \cdot Q(w + g)) \geq \varepsilon \text{Im}(z \cdot Q(g)),
\]
or equivalently,
\[
-\text{Im}(z \cdot Q(w + g)) \leq -\varepsilon \text{Im}(z \cdot Q(g)),
\]
for \(z \in K_1, w \in K_2, \) and all \(g \in \mathbb{R}^f \) such that \(\|g\| \geq R. \)
Proof. Since A is a positive-definite symmetric matrix, there exists a positive-definite symmetric matrix $B \in M(f, \mathbb{R})$ such that $A = BB = BB$ (see (1.7)). The set $B(K_2)$ is a compact subset of \mathbb{C}^f. By Proposition 2.1.2 there exists a positive real number $T > 0$ such that
\[
\text{Im}(z \cdot t(w' + g')(w' + g')) \geq \varepsilon \text{Im}(z \cdot t'g'g')
\]
for $z \in K_1$, $w' \in B(K_2)$, and $g' \in \mathbb{R}^f$ with $\|g'\| \geq T$. We may regard the matrix B^{-1} as an operator from \mathbb{R}^f to \mathbb{R}^f; as such, B^{-1} is bounded. Hence,
\[
\|B^{-1}(g)\| \leq \|B^{-1}\|\|g\|
\]
for $g \in \mathbb{R}^f$. Define $R = \|B^{-1}\|T$. Let $z \in K_1$, $w \in K_2$ and $g \in \mathbb{R}^f$ with $\|g\| \geq R$. Then $w' = Bw \in B(K_2)$, and:
\[
\|B^{-1}(B(g))\| \leq \|B^{-1}\|\|B(g)\|
\]
\[
\|g\| \leq \|B^{-1}\|\|B(g)\|
\]
\[
R \leq \|B^{-1}\|\|B(g)\|
\]
\[
\|B^{-1}\|^{-1}R \leq \|B(g)\|
\]
\[
T \leq \|B(g)\|
\]

Therefore, with $g' = B(g)$,
\[
\text{Im}(z \cdot t(w' + g')(w' + g')) \geq \varepsilon \text{Im}(z \cdot t'g'g')
\]
\[
\text{Im}(z \cdot t(Bw + Bg)(Bw + Bg)) \geq \varepsilon \text{Im}(z \cdot t(Bg)Bg)
\]
\[
\text{Im}(z \cdot t(w + g)BB(w + g)) \geq \varepsilon \text{Im}(z \cdot tBBg)
\]
\[
\text{Im}(z \cdot t(w + g)A(w + g)) \geq \varepsilon \text{Im}(z \cdot tAg)
\]
\[
\text{Im}(z \cdot tQ(w + g)) \geq \varepsilon \text{Im}(z \cdot tQ(g))
\]

This completes the proof. \qed

Proposition 2.1.4. Let f be a positive integer. Let $A \in M(f, \mathbb{R})$ be a positive-definite symmetric matrix, and for $x \in \mathbb{R}^f$ let
\[
Q(x) = \frac{1}{2} xAx.
\]

For $z \in \mathbb{H}_1$ and $w = t(w_1, \ldots, w_f) \in \mathbb{C}^f$, define
\[
\theta(A, z, w) = \sum_{m \in \mathbb{Z}^f} e^{\pi iz \cdot t(m + w)A(m + w)} = \sum_{m \in \mathbb{Z}^f} e^{2\pi izQ(m + w)}.
\]

Let D be a closed disk in \mathbb{H}_1, and let D_1, \ldots, D_f be closed disks in \mathbb{C}^f. Then $\theta(A, z, w_1, \ldots, w_f)$ converges absolutely and uniformly on $D \times D_1 \times \cdots \times D_f$. The function $\theta(A, z, w_1, \ldots, w_f)$ on $\mathbb{H}_1 \times \mathbb{C}^f$ is analytic in each variable.
Proof. We apply Corollary 2.1.3 with $\varepsilon = 1/2$, $K_1 = D$ and $K_2 = D_1 \times \cdots \times D_f$. By this corollary, there exists a finite set X of \mathbb{Z}^f such that for $m \in \mathbb{Z}^f - X$, $z \in K_1$ and $w \in K_2$ we have:

$$|e^{2\pi i z Q(m+w)}| = e^{\Re(2\pi i z Q(m+w))}$$

$$= e^{-2\pi \Im(z Q(m+w))}$$

$$\leq e^{-2\pi (1/2) \Im(z Q(m))}$$

$$= e^{-2\pi Q(m) \Im(z/2)}$$

$$\leq e^{-2\pi \delta Q(m)} = |e^{2\pi i \delta i Q(m)}|.$$

Here, $\delta > 0$ is such that $\delta \leq \Im(z/2)$ for $z \in D$. By Lemma 2.1.1 the series

$$\sum_{m \in \mathbb{Z}^f} |e^{2\pi i (\delta i) Q(m)}|$$

converges. The Weierstrass M-test (see [12], p. 160) now implies that the series

$$\theta(A, z, w) = \sum_{m \in \mathbb{Z}^f} e^{2\pi i z Q(m+w)}$$

converges absolutely and uniformly on $D \times D_1 \times \cdots \times D_f$. Since for each $m \in \mathbb{Z}^f$ the function on $\mathbb{H}_1 \times \mathbb{C}_f$ defined by $(z, w) \mapsto e^{2\pi i z Q(m+w)}$ is an analytic function in each variable z, w_1, \ldots, w_f, and since our series converges absolutely and uniformly on all products of closed disks, it follows that $\theta(A, z, w_1, \ldots, w_f)$ is analytic in each variable (see [12], p. 162).

2.2 The Poisson summation formula

Let f be a positive integer. Let $g : \mathbb{R}^f \rightarrow \mathbb{C}$ be a function, and write $g = u + iv$, where $u, v : \mathbb{R}^f \rightarrow \mathbb{R}$ are functions. We say that g is smooth if u and v are both infinitely differentiable. Assume that g is smooth. Let $(\alpha_1, \ldots, \alpha_f) \in \mathbb{Z}_+^f$. We define

$$D^\alpha g = \left(\frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdots \frac{\partial^{\alpha_f}}{\partial x_f^{\alpha_f}} \right) g.$$

We say that f is a Schwartz function if

$$\sup_{x \in \mathbb{R}^f} |P(x)(D^\alpha)(x)|$$

is finite for all $P(X) = P(X_1, \ldots, X_f) \in \mathbb{C}[X_1, \ldots, X_f]$ and $\alpha \in \mathbb{Z}_+^f$. The set $\mathcal{S}(\mathbb{R}^f)$ of all Schwartz functions is a complex vector space, called the Schwartz
space on \(\mathbb{R}^f \). If \(g \in S(\mathbb{R}^f) \), then we define the Fourier transform of \(g \) to be the function \(\mathcal{F}g : \mathbb{R}^f \to \mathbb{C} \) defined by
\[
(\mathcal{F}g)(x) = \int_{\mathbb{R}^f} g(y) e^{-2\pi i \cdot x y} \, dy
\]
for \(x \in \mathbb{R}^f \). If \(g \in S(\mathbb{R}^f) \), then the integral defining \(\mathcal{F}g \) converges absolutely for every \(x \in \mathbb{R}^f \). In fact, if \(g \in S(\mathbb{R}^f) \), then \(\mathcal{F}g \in S(\mathbb{R}^f) \), and a number of other properties hold; see, for example, chapter 7 of [16], or chapter 13 of [10].

Lemma 2.2.1. Let \(f \) be a positive integer. Let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix, and for \(x \in \mathbb{R}^f \) let
\[
Q(x) = \frac{1}{2} x^t A x.
\]
Let \(w \in \mathbb{C}^f \). The function \(g : \mathbb{R}^f \to \mathbb{C} \) defined by
\[
g(x) = e^{-\pi \cdot Q(x+w)} = e^{-\pi \cdot (x+w)^t A (x+w)}
\]
for \(x \in \mathbb{R}^f \) is in the Schwartz space \(S(\mathbb{R}^f) \).

Proof. We begin with some simplifications. Also, there exists a positive-definite symmetric matrix \(B \in \text{GL}(f, \mathbb{R}) \) such that
\[
A = t^{\cdot} B B^{-1} \quad \text{(see (1.7))}.
\]
The function \(g \) is in \(S(\mathbb{R}^f) \) if and only if \(g \circ B^{-1} \) is in \(S(\mathbb{R}^f) \). Now
\[
g(B^{-1}x) = e^{-\pi \cdot (B^{-1}x+w)^t B^{-1} B (B^{-1}x+w)}
\]
\[
= e^{-\pi \cdot (x+Bw)^t (x+Bw)}.
\]
It follows that we may assume that \(A = 1 \). Next, let \(w = u + iv \) where \(u, v \in \mathbb{R}^f \). Since \(g \) is in \(S(\mathbb{R}^f) \) if and only if the function defined by \(x \mapsto g(x-u) \) for \(x \in \mathbb{R}^f \) is in \(S(\mathbb{R}^f) \), we may also assume that \(u = 0 \). Now
\[
g(x) = e^{-\pi \cdot (x+iv)^t (x+iv)}
\]
\[
= e^{-\pi \cdot xx - 2\pi i \cdot xv + \pi \cdot vv}
\]
\[
= e^{\pi \cdot vv} e^{-\pi \cdot xx - 2\pi i \cdot xv}.
\]
Since \(e^{\pi \cdot vv} \) is a constant, it suffices to prove that the function \(h : \mathbb{R}^f \to \mathbb{C} \) defined by
\[
h(x) = e^{-\pi \cdot xx - 2\pi i \cdot xv}
\]
for \(x \in \mathbb{R}^f \) is contained in \(S(\mathbb{R}^f) \). Let \(\alpha = (\alpha_1, \ldots, \alpha_f) \in \mathbb{Z}_{\geq 0}^f \). Then there exists a polynomial \(Q_\alpha(X_1, \ldots, X_f) \in \mathbb{C}[X_1, \ldots, X_f] \) such that
\[
(D^\alpha h)(x) = Q_\alpha(x) e^{-\pi \cdot xx - 2\pi i \cdot xv}.
\]
2.2. THE POISSON SUMMATION FORMULA

for \(x \in \mathbb{R}^f \). Hence, if \(P(X_1, \ldots, X_f) \in \mathbb{C}[X_1, \ldots, X_f] \), then

\[
|P(x)(D^\alpha h)(x)| = |P(x)Q_\alpha(x)e^{-\pi'xx - 2\pi'xv}|
\]

= \(|P(x)Q_\alpha(x)e^{-\pi'xx}| \)

for \(x \in \mathbb{R}^f \). This equality implies that it now suffices to prove that the function defined by \(x \mapsto e^{-\pi'xx} \) for \(x \in \mathbb{R}^f \) is contained in \(S(\mathbb{R}^f) \). This is a well-known fact that can be proven using L'Hôpital's rule.

Lemma 2.2.2. Let \(f \) be a positive integer. If \(w \in \mathbb{C}^f \), then

\[
\int_{\mathbb{R}^f} e^{-\pi'(y+w)(y+w)} \, dy = \int_{\mathbb{R}^f} e^{-\pi'y^2} \, dy.
\]

Proof. By Fubini’s theorem

\[
\int_{\mathbb{R}^f} e^{-\pi'(y+w)(y+w)} \, dy = \int_{\mathbb{R}^f} e^{-\pi(y_1+w_1)^2 - \cdots - \pi(y_f+w_f)^2} \, dy
\]

= \(\int_{\mathbb{R}^f} e^{-\pi(y_1+w_1)^2} \cdots e^{-\pi(y_f+w_f)^2} \, dy \)

= \(\left(\int_{\mathbb{R}} e^{-\pi(y_1+w_1)^2} \, dy_1 \right) \cdots \left(\int_{\mathbb{R}} e^{-\pi(y_f+w_f)^2} \, dy_f \right) \).

It thus suffices to prove the lemma when \(f = 1 \). Write \(w = u + iv \) with \(u, v \in \mathbb{R} \). Then

\[
\int_{\mathbb{R}} e^{-\pi(y+u+iv)^2} \, dy = \int_{\mathbb{R}} e^{-\pi(y+iv)^2} \, dy.
\]

To complete the proof we will use Cauchy’s theorem. Assume, say, \(v > 0 \). Let \(a > 0 \), and let \(\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 \) be the closed piecewise smooth curve as below:

\[
\begin{array}{c}
-\gamma_4 \quad \gamma_3 \quad \gamma_2 \\
-\gamma_1 \quad \gamma_4 \quad \gamma_3 \quad \gamma_2
\end{array}
\]

By Cauchy’s theorem (see chapter 2 of [12]) applied to the analytic function \(z \mapsto e^{-\pi z^2} \) we have

\[
0 = \int_{\gamma} e^{-\pi z^2} \, dz = \int_{\gamma_1} e^{-\pi z^2} \, dz + \int_{\gamma_2} e^{-\pi z^2} \, dz + \int_{\gamma_3} e^{-\pi z^2} \, dz + \int_{\gamma_4} e^{-\pi z^2} \, dz.
\]
CHAPTER 2. THETA SERIES ON THE UPPER HALF-PLANE

Using the definitions of these contour integrals, this is:

\[0 = \int_{-a}^{a} e^{-\pi y^2} \, dy + \int_{\gamma_2} e^{-\pi z^2} \, dz - \int_{-a}^{a} e^{-\pi (y + iv)^2} \, dy + \int_{\gamma_4} e^{-\pi z^2} \, dz, \]

or equivalently,

\[\int_{-a}^{a} e^{-\pi (y + iv)^2} \, dy = \int_{-a}^{a} e^{-\pi y^2} \, dy + \int_{\gamma_2} e^{-\pi z^2} \, dz + \int_{\gamma_4} e^{-\pi z^2} \, dz. \] (2.1)

On the curves \(\gamma_2 \) and \(\gamma_4 \) the function \(z \mapsto e^{-\pi z^2} \) is bounded by \(e^{-\pi a^2 + \pi v^2} \).

Therefore (see Theorem 3 on page 81 of [12]),

\[| \int_{\gamma_2} e^{-\pi z^2} \, dz | \leq ve^{-\pi a^2 + \pi v^2}, \quad | \int_{\gamma_3} e^{-\pi z^2} \, dz | \leq ve^{-\pi a^2 + \pi v^2}. \]

These bounds imply that

\[\lim_{a \to \infty} \int_{\gamma_2} e^{-\pi z^2} \, dz = \lim_{a \to \infty} \int_{\gamma_4} e^{-\pi z^2} \, dz = 0. \]

Letting \(a \to \infty \) in (2.1), we thus obtain

\[\int_{-\infty}^{\infty} e^{-\pi (y + iv)^2} \, dy = \int_{-\infty}^{\infty} e^{-\pi y^2} \, dy. \]

This is the desired result. If \(v < 0 \), then there is a similar proof. \(\square \)

Lemma 2.2.3. Let \(f \) be a positive integer. Let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix, and for \(x \in \mathbb{R}^f \) let

\[Q(x) = \frac{1}{2} x A x. \]

Let \(w \in \mathbb{C}^f \). Define \(g : \mathbb{R}^f \to \mathbb{C} \) by

\[g(x) = e^{-2\pi Q(x + w)} = e^{-\pi \langle x + w \rangle A(x + w)} \]

for \(x \in \mathbb{R}^f \). Then

\[(\mathcal{F}g)(x) = \det(A)^{-1/2} e^{2\pi i \langle x \rangle w} e^{-\pi \langle x \rangle A^{-1} x} \]

for \(x \in \mathbb{R}^f \).

Proof. There exists positive-definite symmetric matrix \(B \in GL(f, \mathbb{R}) \) such that \(A = ^t B B = BB \) (see (1.7)). Let \(x \in \mathbb{R}^f \). Then:

\[(\mathcal{F}g)(x) = \int_{\mathbb{R}^f} \exp(-2\pi Q(y + w)) \exp(-2\pi i \langle y \rangle x) \, dy \]
Applying now Lemma 2.2.2, we obtain:

\[
= \int_{\mathbb{R}^j} \exp \left(-\pi \left(2Q(y + w) + 2i^t xy \right) \right) dy \\
= \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}(y + w)A(y + w) + 2i^t xy \right) \right) dy \\
= \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}(y + w)A(y + w) + 2i^t yx \right) \right) dy \\
= \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}(y + w)BB(y + w) + 2i^t (BY)^t B^{-1} x \right) \right) dy \\
= \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}(BY + Bw)(BY + Bw) + 2i^t (BY)^t B^{-1} x \right) \right) dy \\
(\mathcal{F}g)(x) = \det(B)^{-1/2} \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}(y + Bw)(y + Bw) + 2i^t y^t B^{-1} x \right) \right) dy.
\]

In the last step we used the formula for a linear change of variables (see Theorem 2.2.20, (e) on page 50 and section 2.2.3 of [17]; note also that det(A) and det(B) are positive, as A and B are positive-definite symmetric matrices). Now \(\det(B)^2 = \det(A)\), so that \(\det(A)^{1/2} = \det(B)\). Hence,

\[
(\mathcal{F}g)(x) \\
= \det(A)^{-1/2} \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}yy + 2i^t yBw + \frac{1}{4}(Bw)Bw + 2i^t y^t B^{-1} x \right) \right) dy \\
= \det(A)^{-1/2} \exp(-\pi i^t w A w) \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}yy + 2i^t yBw + 2i^t y^t B^{-1} x \right) \right) dy \\
= \det(A)^{-1/2} \exp(-\pi i^t w A w) \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}yy + 2i^t (Bw + i^t B^{-1} x) \right) \right) dy \\
\times \int_{\mathbb{R}^j} \exp \left(-\pi \left(\frac{1}{4}yy + 2i^t y(Bw + i^t B^{-1} x) + \frac{1}{4}(Bw + i^t B^{-1} x)(Bw + i^t B^{-1} x) \right) \right) dy \\
= \det(A)^{-1/2} \exp \left(-\pi i^t w A w \right) \exp \left(\pi i^t w A w + 2\pi i^t xw - \pi i^t x A^{-1} x \right) \\
\times \int_{\mathbb{R}^j} \exp \left(-\pi \left(y + 2i^t B^{-1} x \right) + \pi i^t y + 2i^t B^{-1} x \right) \right) dy.
\]

Applying now Lemma 2.2.2, we obtain:

\[
(\mathcal{F}g)(x) = \det(A)^{-1/2} \exp \left(2\pi i^t xw - \pi i^t x A^{-1} x \right) \int_{\mathbb{R}^j} \exp \left(-\pi i^t yy \right) dy
\]
\[(Fg)(x) = \det(A)^{-1/2} \exp \left(2\pi i^t x w - \pi^t x A^{-1} x \right).\]

Here, we have used the well-known classical fact that
\[
\int_{\mathbb{R}^f} \exp \left(-\pi^t y y \right) dy = 1.
\]
This completes the calculation. \(\square\)

Theorem 2.2.4 (Poisson summation formula). Let \(f\) be a positive integer. Let \(g \in S(\mathbb{R}^f)\). Then
\[
\sum_{m \in \mathbb{Z}^f} g(m) = \sum_{m \in \mathbb{Z}^f} (Fg)(m),
\]
where both series converge absolutely.

Proof. See page 249 of [10]. \(\square\)

Lemma 2.2.5. Let \(f\) be a positive integer. Let \(A \in \text{M}(f, \mathbb{R})\) be a positive-definite symmetric matrix. Let \(\varepsilon\) be real number such that \(0 < \varepsilon < 1\). Let \(K_1\) be a compact subset of \(\mathbb{H}_1\), and let \(K_2\) be a compact subset of \(\mathbb{C}^f\). For \(x \in \mathbb{C}^f\), define
\[
Q(x) = \frac{1}{2} x Ax.
\]
Then there exists a positive real number \(R > 0\) such that
\[
-\text{Im} \left((1/z)^t g A^{-1} g + 2^t g w \right) \leq -\varepsilon \text{Im} \left((1/z) \cdot g A^{-1} g \right),
\]
for \(z \in K_1\), \(w \in K_2\), and all \(g \in \mathbb{R}^f\) such that \(\|g\| \geq R\).

Proof. This proof is similar to the proof of Proposition 2.1.2. First of all, there exists a positive-definite symmetric matrix \(B \in \text{GL}(f, \mathbb{R})\) such that \(A = ^t B B\) (see (1.7)). If \(m \in \mathbb{R}^f\), then we note that
\[
^t g A^{-1} g = \left| ^t g A^{-1} g \right|
\]
\[
= \left| ^t B^{-1} g \cdot (^t B^{-1} g) \right|
\]
\[
= \| ^t B^{-1} g \|^2
\]
\[
= \left(\frac{1}{\| ^t B \|} \cdot \| ^t B \| \cdot \| ^t B^{-1} g \| \right)^2
\]
\[
\geq \left(\frac{1}{\| ^t B \|} \cdot \| g \| \right)^2
\]
\[
= \frac{1}{\| ^t B \|^2} \cdot \| g \|^2.
\]
Next, let \(M > 0\) be such that
\[
|\text{Im}(1/z)|, |\text{Im}(w)| \leq M
\]
2.2. THE POISSON SUMMATION FORMULA

for \(z \in K_1 \) and \(w \in K_2 \); note that the set consisting of \(-1/z\) for \(z \in K_1 \) is also a compact subset of \(\mathbb{H}_1 \). Let \(\delta > 0 \) be such that

\[
\text{Im}(-1/z) \geq \delta > 0.
\]

Let \(R > 0 \) be such that if \(x \geq R \), then

\[
\delta (1 - \varepsilon) \cdot \frac{1}{||B||^2} \cdot x^2 \geq 2Mx.
\]

Now \(z \in K_1, w \in K_2 \), and \(g \in \mathbb{R}^f \) with \(||g|| \geq R \). Write \(-1/z = \sigma + it\) for \(\sigma, t \in \mathbb{R} \) and \(w = a + bi \) for \(a, b \in \mathbb{R}^f \). We have

\[
-\text{Im}(2^t gw) = -2^t gb \leq 2||gb|| \leq 2M||g||.
\]

On the other hand,

\[
(1 - \varepsilon) \cdot \text{Im}((-1/z)^t gA^{-1}g) = t \cdot gA^{-1}g \\
\geq \delta (1 - \varepsilon) \cdot \frac{1}{||B||^2} \cdot ||g||^2
\]

It follows that

\[
-\text{Im}(2^t gw) \leq (1 - \varepsilon) \cdot \text{Im}((-1/z)^t gA^{-1}g) \\
-\text{Im}((-1/z)^t gA^{-1}g + 2^t gw) \leq -\varepsilon \cdot \text{Im}((-1/z)^t gA^{-1}g).
\]

This is the desired result.

\[\square \]

Theorem 2.2.6. Let \(f \) be a positive integer. Assume that \(f \) is even, and set

\[
k = \frac{f}{2}.
\]

Let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix, and for \(x \in \mathbb{R}^f \) let

\[
Q_A(x) = \frac{1}{2} x^t A x, \quad Q_{A^{-1}}(x) = \frac{1}{2} x^t A^{-1} x.
\]

The series

\[
\sum_{m \in \mathbb{Z}^f} e^{\pi i(-1/z)^t m A^{-1} m + 2\pi i^t m w}
\]

converges absolutely and uniformly for \((z, w) \in D \times D_1 \times \cdots \times D_f\), where \(D \) is any closed disk in \(\mathbb{H}_1 \), and \(D_1, \ldots, D_f \) are any closed disks in \(\mathbb{C}^f \). The function that sends \((z, w) \in \mathbb{H}_1 \times \mathbb{C}^f\) to this series is analytic in each variable. We have

\[
\theta(A, z, w) = \frac{i^k}{z^k \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}^f} e^{\pi i(-1/z)^t m A^{-1} m + 2\pi i^t m w}
\]

for \(z \in \mathbb{H}_1 \) and \(w \in \mathbb{C}^f \).
Proof. We apply Lemma 2.2.5 with \(\varepsilon = 1/2, K_1 = D, \) and \(K_2 = D_1 \times \cdots \times D_f. \) By this corollary, there exists a finite set \(X \) of \(\mathbb{Z}^f \) such that for \(m \in \mathbb{Z}^f - X, z \in K_1 \) and \(w \in K_2 \) we have:

\[
|e^{\pi((-1/2)zmA^{-1}m+2\pi^iwm)}| = e^{-\pi\text{Im}\left((-1/2)zmA^{-1}m\right)}
\]

\[
\leq e^{-\pi\text{Im}\left((-1/2)zQ_{A^{-1}}(m)\right)}
\]

\[
= e^{-2\pi Q_{A^{-1}}(m)\text{Im}(-1/(2z))}
\]

\[
\leq e^{-2\pi\delta Q_{A^{-1}}(m)}
\]

\[
= |e^{2\pi i(\delta)Q_{A^{-1}}(m)}|
\]

Here, \(\delta > 0 \) is such that \(\delta \leq \text{Im}(-1/(2z)) \) for \(z \in D. \) By Lemma 2.1.1 the series

\[
\sum_{m \in \mathbb{Z}^f} |e^{2\pi i(\delta)Q_{A^{-1}}(m)}|
\]

converges. The Weierstrass M-test (see [12], p. 160) now implies that the series

\[
\sum_{m \in \mathbb{Z}^f} e^{\pi((-1/2)zmA^{-1}m+2\pi^iwm)}
\]

converges absolutely and uniformly on \(D \times D_1 \times \cdots \times D_f. \) Since for each \(m \in \mathbb{Z}^f \) the function on \(\mathbb{H}_1 \times \mathbb{C}^f \) defined by \((z, w) \mapsto e^{\pi((-1/2)zmA^{-1}m+2\pi^iwm)} \) is an analytic function in each variable \(z, w_1, \ldots, w_f, \) and since our series converges absolutely and uniformly on all products of closed disks, it follows that this series is analytic in each variable (see [12], p. 162).

Now fix \(w \in \mathbb{C}^f. \) Define \(g : \mathbb{R}^f \rightarrow \mathbb{C} \) by

\[
g(x) = e^{-2\pi Q_A(x+w)} = e^{-\pi^i(x+w)A(x+w)}
\]

for \(x \in \mathbb{R}^f. \) Then by Lemma 2.2.3,

\[
(\mathcal{F}g)(x) = \det(A)^{-1/2}e^{-\pi^i A^{-1}x + 2\pi^i xw}
\]

for \(x \in \mathbb{R}^f. \) By Theorem 2.2.4, the Poisson summation formula, we have:

\[
\sum_{m \in \mathbb{Z}^f} e^{-2\pi Q_A(m+w)} = \sum_{m \in \mathbb{Z}^f} \det(A)^{-1/2}e^{-\pi^i A^{-1}x + 2\pi^i xw}
\]

\[
\sum_{m \in \mathbb{Z}^f} e^{2\pi i Q_A(m+w)} = \det(A)^{-1/2} \sum_{m \in \mathbb{Z}^f} e^{\pi i ((-1/i) A^{-1}x + 2\pi^i xw)}.
\]

Let \(t > 0. \) Replacing \(A \) by \(tA, \) we obtain similarly,

\[
\sum_{m \in \mathbb{Z}^f} e^{2\pi i t Q_A(m+w)} = \frac{1}{\det(tA)^{1/2}} \sum_{m \in \mathbb{Z}^f} e^{\pi i ((-1/(it)) A^{-1}x + 2\pi^i xw)}
\]
2.3. DIFFERENTIAL OPERATORS

\[
\sum_{m \in \mathbb{Z}^f} e^{2\pi i z \cdot Q_A(m + w)} = i^k \frac{z^k}{\sqrt{\det(A)}} \sum_{m \in \mathbb{Z}^f} e^{\pi i (-1/z) A^{-1} z + 2\pi i x w},
\]

for \(z \in \mathbb{H}_1 \) of the form \(z = it \) for \(t > 0 \). Since both sides of the last equation are analytic functions in \(z \) for \(z \in \mathbb{H}_1 \), the Identity Principle (see p. 307 of [12]) implies that this equality holds for all \(z \in \mathbb{H}_1 \).

2.3 Differential operators

Let \(f \) be a positive integer. Let \(H(\mathbb{C}^f) \) be the \(\mathbb{C} \)-algebra of all functions

\[F : \mathbb{C}^f \to \mathbb{C} \]

that are analytic in each variable. Let \(\ell = (\ell_1, \ldots, \ell_f) \in \mathbb{C}^f \). We define a \(\mathbb{C} \) linear map

\[L_\ell : H(\mathbb{C}^f) \to H(\mathbb{C}^f) \]

by

\[L_\ell(F) = \sum_{i=1}^f \ell_i \frac{\partial F}{\partial w_i}. \]

Lemma 2.3.1. Let \(f \) be a positive integer, and let \(\ell \in \mathbb{C}^f \). Then

\[L_\ell(F_1 \cdot F_2) = L_\ell(F_1) \cdot F_2 + F_1 \cdot L_\ell(F_2) \]

for \(F_1, F_2 \in H(\mathbb{C}^f) \). Also,

\[L_\ell(e^F) = L_\ell(F) \cdot e^F \]

for \(F \in H(\mathbb{C}^f) \).

Proof. Let \(F_1, F_2 \in H(\mathbb{C}^f) \). We have

\[
L_\ell(F_1 \cdot F_2) = \sum_{i=1}^f \ell_i \frac{\partial}{\partial w_i} (F_1 \cdot F_2)
\]

\[
= \sum_{i=1}^f \ell_i \left(\frac{\partial F_1}{\partial w_i} \cdot F_2 + F_1 \cdot \frac{\partial F_2}{\partial w_i} \right)
\]

\[
= \sum_{i=1}^f \ell_i \frac{\partial F_1}{\partial w_i} \cdot F_2 + \sum_{i=1}^f \ell_i F_1 \cdot \frac{\partial F_2}{\partial w_i}
\]
\(\sum_{i=1}^{f} \ell_i \frac{\partial F_1}{\partial w_i} \cdot F_2 + F_1 \cdot \left(\sum_{i=1}^{f} \ell_i \frac{\partial F_2}{\partial w_i} \right) \)

\(= L_\ell(F_1) \cdot F_2 + F_1 \cdot L_\ell(F_2) \).

Let \(F \in H(C^f) \). Then:

\[
L_\ell(e^F) = \sum_{i=1}^{f} \ell_i \frac{\partial}{\partial w_i}(e^F) = \left(\sum_{i=1}^{f} \ell_i \frac{\partial F}{\partial w_i} \right) \cdot e^F = L_\ell(F) \cdot e^F.
\]

This completes the proof. \(\square \)

Lemma 2.3.2. Let \(f \) be a positive integer and let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix. Assume that \(\ell \in C^f \) is such that

\(^\ell \ell A \ell = 0 \).

Let \(m \in C^f \) be fixed, and let \(r \) be a non-negative integer. Then:

\[
L_\ell\left(^\ell\ell A(m+w)^{m+w} \right) = 2 ^\ell \ell A(m+w),
\]

\[
L_\ell\left(\left(^\ell \ell A(m+w) \right)^r \right) = 0,
\]

\[
L_\ell\left(^\ell m \ell \right) = ^\ell \ell m.
\]

Here, all functions are variables in \(w \in C^f \).

Proof. We have

\[
L_\ell\left(^\ell\ell A(m+w)^{m+w} \right)
= L_\ell\left(\sum_{i,j=1}^{f} a_{ij}(m_i + w_i)(m_j + w_j) \right)
= \sum_{i,j=1}^{f} a_{ij}L_\ell((m_i + w_i)(m_j + w_j))
= \sum_{i,j=1}^{f} a_{ij}\left(L_\ell((m_i + w_i))(m_j + w_j) + (m_i + w_i)L_\ell((m_j + w_j)) \right)
= \sum_{i,j=1}^{f} a_{ij}\left(\ell_i(m_j + w_j) + \ell_j(m_i + w_i) \right)
\]
2.3. DIFFERENTIAL OPERATORS

\[\begin{align*}
&= \sum_{i,j=1}^{f} a_{ij} \ell_i (m_j + w_j) + \sum_{i,j=1}^{f} a_{ij} \ell_j (m_i + w_i) \\
&= \ell A(m + w) + \ell (m + w) A \ell \\
&= 2 \ell A(m + w).
\end{align*} \]

We prove the second assertion by induction on \(r \). The assertion is clear if \(r = 0 \).

For \(r = 1 \), we have:

\[\begin{align*}
L_\ell (\ell A(m + w)) &= L_\ell \left(\sum_{i,j=1}^{f} a_{ij} \ell_i (m_j + w_j) \right) \\
&= \sum_{i,j=1}^{f} a_{ij} \ell_i L_\ell (m_j + w_j) \\
&= \sum_{i,j=1}^{f} a_{ij} \ell_i \ell_j \\
&= \ell A \ell \\
&= 0.
\end{align*} \]

Assume now that \(r \geq 2 \) and that the claim holds for the non-negative integers 0, 1, \ldots, \(r - 1 \). Then

\[\begin{align*}
L_\ell \left(\left(\ell A(m + w) \right)^r \right) &= L_\ell \left(\ell A(m + w) \cdot \left(\ell A(m + w) \right)^{r-1} \right) \\
&= L_\ell \left(\ell A(m + w) \cdot \left(\ell A(m + w) \right)^{r-1} + \ell A(m + w) \cdot L_\ell \left(\left(\ell A(m + w) \right)^{r-1} \right) \right) \\
&= 0 \cdot \left(\ell A(m + w) \right)^{r-1} + \ell A(m + w) \cdot 0 \\
&= 0.
\end{align*} \]

The final assertion of the lemma is straightforward. \(\Box \)

Proposition 2.3.3. Let \(f \) be a positive even integer, and let \(A \in \text{M}(f, \mathbb{R}) \) be a positive-definite symmetric matrix. Define

\[k = \frac{f}{2} \]

Let \(\ell \in \mathbb{C}^f \) be such that

\[\ell A \ell = 0. \]

For every non-negative integer \(r \) the series

\[\sum_{m \in \mathbb{Z}^f} \left(\ell A(m + w) \right)^r e^{\pi iz(m + w)A(m + w)} \]
and
\[\sum_{m \in \mathbb{Z}^f} \left(\ell m \right)^r e^{\pi i (-1/2) A^{-1} m + 2\pi i \mu w} \]
converge absolutely and uniformly for \((z, w) \in D \times D_1 \times \cdots \times D_f\), where \(D\) is any closed disk in \(\mathbb{H}_1\), and \(D_1, \ldots, D_f\) are any closed disks in \(\mathbb{C}^f\). Both series define functions on \(\mathbb{H}_1 \times \mathbb{C}^f\) that are analytic in each variable. Moreover,
\[\sum_{m \in \mathbb{Z}^f} (\ell A(m + w))^r e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} = \frac{i^k}{z^{k+r} \sqrt{\text{det}(A)}} \sum_{m \in \mathbb{Z}^f} (\ell m)^r e^{\pi i (-1/2) A^{-1} m + 2\pi i \mu w}. \]

Proof. We prove this result by induction on \(r\). The case \(r = 0\) is Theorem 2.2.6. Assume the claims hold for \(r\); we will prove that they hold for \(r+1\). Let
\[S_1(z, w) = \sum_{m \in \mathbb{Z}^f} (\ell A(m + w))^r e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} \]
for \(s \in \mathbb{H}_1\) and \(w \in \mathbb{C}^f\). Let \(D\) be any closed disk in \(\mathbb{H}_1\), and let \(D_1, \ldots, D_f\) be any closed disks in \(\mathbb{C}^f\). Since the above series converge absolutely and uniformly on \(D \times D_1 \times \cdots \times D_f\) to \(S_1\), and since the terms of this series are analytic functions in each of the variables \(z, w_1, \ldots, w_f\), the series
\[\sum_{m \in \mathbb{Z}^f} L_\ell \left((\ell A(m + w))^r e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} \right) \]
converges absolutely and uniformly on \(D \times D_1 \times \cdots \times D_f\) to the analytic function \(L_\ell S_1\) (see p. 162 of [12]). We have for \(z \in \mathbb{H}_1\) and \(w \in \mathbb{C}^f\), using Lemma 2.3.1 and Lemma 2.3.2,
\[(L_\ell S_1)(z, w) = \sum_{m \in \mathbb{Z}^f} L_\ell \left((\ell A(m + w))^r e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} \right) \]
\[= \sum_{m \in \mathbb{Z}^f} L_\ell \left((\ell A(m + w))^r e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} \right) + (\ell A(m + w))^r L_\ell (e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)}) \]
\[= \sum_{m \in \mathbb{Z}^f} (\ell A(m + w))^r \cdot L_\ell (e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)}) \cdot e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)} \]
\[= 2\pi iz \sum_{m \in \mathbb{Z}^f} (\ell A(m + w))^{r+1} e^{\pi i z^\frac{1}{2} \langle m + w \rangle A(m + w)}. \]
Next, for \(z \in \mathbb{H}_1\) and \(w \in \mathbb{C}^f\), let
\[S_2(z, w) = \frac{i^k}{z^{k+r} \sqrt{\text{det}(A)}} \sum_{m \in \mathbb{Z}^f} (\ell m)^r e^{\pi i (-1/2) A^{-1} m + 2\pi i \mu w}. \]
2.3. DIFFERENTIAL OPERATORS

Comments similar to those above apply to \(S_2 \) and the series defining \(S_2 \). For \(S_2 \) we have for \(z \in \mathbb{H}_1 \) and \(w \in \mathbb{C}_1 \), using Lemma 2.3.1 and Lemma 2.3.2,

\[
(L_\ell S_2)(z, w) = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}_f} L_\ell \left((\ell m)^r e^{\pi i (1/z) (m A^{-1} m + 2\pi i m w)} \right)
\]

\[
= \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}_f} (\ell m)^r L_\ell \left(e^{\pi i (1/z) (m A^{-1} m + 2\pi i m w)} \right)
\]

or equivalently,

\[
\sum_{m \in \mathbb{Z}_f} (\ell A(m + w))^{r+1} e^{\pi iz (m + w) A(m + w)} = \frac{i^k}{z^{k+r+1} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}_f} (\ell m)^{r+1} e^{\pi iz (m A^{-1} m + 2\pi i m w)}.
\]

By induction, the proof is complete.

Let \(f \) be a positive even integer, and let \(A \in M(f, \mathbb{R}) \) be a positive-definite symmetric matrix. For \(r \) a non-negative integer, we let \(\mathcal{H}_r(A) \) be the \(\mathbb{C} \) vector space spanned by the polynomials in \(w_1, \ldots, w_f \) given by

\[
(\ell A w)^r
\]

where \(w = (w_1, \ldots, w_f) \) and \(\ell \in \mathbb{C}_1 \) with \(\ell A \ell = 0 \). The elements of \(\mathcal{H}_r(A) \) are homogeneous polynomials of degree \(r \), and are called **spherical functions** with respect to \(A \).
2.4 A space of theta series

Lemma 2.4.1. Let \(f \) be a positive even integer, and define \(k = f/2 \). Let \(A \in \text{M}(f, \mathbb{Z}) \) be an even symmetric positive-definite matrix, and let \(N \) be the level of \(A \). Define the quadratic form \(Q(x) \) in \(f \) variables by
\[
Q(x) = \frac{1}{2} x^T Ax.
\]

Let \(r \) be a non-negative integer, and let \(P \in \mathcal{H}_r(A) \). Let \(h \in \mathbb{Z}^f \) be such that \(Ah \equiv 0 \, (\text{mod } N) \).

For \(z \in \mathbb{H}_1 \) define
\[
\theta(A, P, h, z) = \sum_{n \in \mathbb{Z}^f, n \equiv h \, (\text{mod } N)} P(n) e^{2\pi i z Q(n)/N}.
\]

This series converges absolutely and uniformly on closed disks in \(\mathbb{H}_1 \) to an analytic function. If \(h, h' \in \mathbb{Z}^f \) are such that \(Ah \equiv 0 \, (\text{mod } N) \), \(Ah' \equiv 0 \, (\text{mod } N) \), and \(h \equiv h' \, (\text{mod } N) \), then
\[
\theta(A, P, h, z) = \theta(A, P, h', z), \quad (2.2)
\]
\[
\theta(A, P, h, z) = \theta(A, P, -h, z), \quad (2.3)
\]
for \(z \in \mathbb{H}_1 \). For \(h \in \mathbb{Z}^f \) with \(Ah \equiv 0 \, (\text{mod } N) \) and \(P \in \mathcal{H}_r(A) \) we have
\[
\theta(A, P, h, z) \bigg|_{k+r} \left[\begin{array}{c} 1 \\ -1 \end{array} \right] = \frac{k^k}{\sqrt{\det(A)}} \sum_{g \equiv h \, (\text{mod } N)} e^{2\pi i \frac{b Ah}{N}} \theta(A, P, g, z) \quad (2.4)
\]
and
\[
\theta(A, P, h, z) \bigg|_{k+r} \left[\begin{array}{c} 1 \\ b \end{array} \right] = e^{2\pi i h \frac{Q(g)}{N}} \theta(A, P, h, z) \quad (2.5)
\]
for \(z \in \mathbb{H}_1 \). Let \(P \in \mathcal{H}_r(A) \), and let \(V(A, P) \) be the \(\mathbb{C} \) vector space spanned by the functions \(\theta(A, P, h, -) \) for \(h \in \mathbb{Z}^f \) with \(Ah = 0 \). The \(\mathbb{C} \) vector space \(V(A, P) \) is a right \(\text{SL}(2, \mathbb{Z}) \) module under the \(|_{k+r} \) action.

Proof. The assertions (2.2) and (2.3) follow from the involved definitions.

To prove (2.4) and (2.5), let \(h \in \mathbb{Z}^f \) with \(Ah \equiv 0 \, (\text{mod } N) \) and \(P \in \mathcal{H}_r(A) \). Using the definition of \(\mathcal{H}_r(A) \), it is clear that may assume that the polynomial \(P \) is of the form
\[
P(w) = (\ell^T A \ell)^r.
\]
for some \(\ell \in \mathbb{C}^f \) such that \(\ell^T A \ell = 0 \). We recall from Proposition 2.3.3 that
2.4. A SPACE OF THETA SERIES

\[\sum_{m \in \mathbb{Z}^f} \left(\ell A(m + w) \right)^r e^{\pi i \frac{\ell}{A(m+w)}} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}^f} \left(\ell m \right)^r e^{\pi i \frac{\ell}{A} m + \pi i \frac{\ell m w}{A}}. \]

for \(z \in \mathbb{H}_1 \) and \(w \in \mathbb{C}^f \). Replacing \(w \) with \(h/N \), we obtain:

\[\sum_{m \in \mathbb{Z}^f} \left(\ell A(m + \frac{h}{N}) \right)^r e^{\pi i \frac{\ell}{A(m+\frac{h}{N})}} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}^f} \left(\ell m \right)^r e^{\pi i \frac{\ell}{A} m + \pi i \frac{\ell m h}{A}}. \]

Let \(m \in \mathbb{Z}^f \). Then

\[m + \frac{h}{N} = \frac{h + mN}{N} = \frac{n}{N}, \]

where \(n = h + mN \). The map

\[\mathbb{Z}^f \sim \rightarrow \{ n \in \mathbb{Z}^f : n \equiv h \pmod{N} \} \]

defined by \(m \mapsto n = h + mN \) is a bijection, the inverse of which is given by \(n \mapsto (n - h)/N \). It follows that

\[N^{-r} \sum_{n \in \mathbb{Z}^f \atop n \equiv h \pmod{N}} \left(\ell An \right)^r e^{\pi i \frac{\ell An}{N}} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{m \in \mathbb{Z}^f} \left(\ell m \right)^r e^{\pi i \frac{\ell}{A} m + \pi i \frac{\ell m h}{A}}. \]

Next, consider the map

\[\mathbb{Z}^f \sim \rightarrow \{ g \in \mathbb{Z}^f : Ag \equiv 0 \pmod{N} \} \]

defined by \(m \mapsto g = NA^{-1}m \); note that \(NA^{-1}m \in \mathbb{Z}_f \) for \(m \in \mathbb{Z}^f \) because \(NA^{-1} \) is integral by the definition of the level \(N \). This map is a bijection, with inverse defined by \(g \mapsto m = N^{-1}Ag \). Hence,

\[N^{-r} \sum_{n \in \mathbb{Z}^f \atop n \equiv h \pmod{N}} \left(\ell An \right)^r e^{\pi i \frac{\ell An}{N}} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{g \in \mathbb{Z}^f \atop Ag \equiv 0 \pmod{N}} \left(\ell Ag \right)^r e^{\pi i \frac{\ell}{A} \frac{Ag}{N} + \pi i \frac{\ell Ag h}{N}}. \]
Cancelling the common factor N^{-r}, we get:

$$
\sum_{n \in \mathbb{Z}} \left(\ell A n \right)^{r} e^{i \pi n A n / N^2} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{g \in \mathbb{Z}^f \atop Ag \equiv 0 \pmod{N}} \left(\ell A g \right)^{r} e^{i \pi \left(-1/z\right) b g A g / N^2 + 2 \pi i b A h / N^2}.
$$

The set of $g \in \mathbb{Z}^f$ such that $Ag \equiv 0 \pmod{N}$ is a subgroup of \mathbb{Z}^f; this subgroup in turn contains the subgroup NZ^f. We may therefore sum in stages on the right-hand side. Let $F(g)$ be the summand on the right-hand side for $g \in \mathbb{Z}^f$ with $Ag \equiv 0 \pmod{N}$. The form of this summation in stages is then:

$$
\sum_{g \in \mathbb{Z}^f \atop Ag \equiv 0 \pmod{N}} F(n) = \sum_{g \in \mathbb{Z}^f / NZ^f \atop Ag \equiv 0 \pmod{N}} \sum_{m \in NZ^f \atop n_1 \equiv g \pmod{N}} F(n_1).
$$

Applying this observation, we have:

$$
\sum_{n \in \mathbb{Z}^f \atop n \equiv h \pmod{N}} \left(\ell A n \right)^{r} e^{i \pi n A n / N^2} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{g \equiv 0 \pmod{N}} \sum_{n_1 \in \mathbb{Z}^f \atop n_1 \equiv g \pmod{N}} \left(\ell A n_1 \right)^{r} e^{i \pi \left(-1/z\right) b n_1 A n_1 / N^2 + 2 \pi i b n_1 A h / N^2}.
$$

Let $g \in \mathbb{Z}^f$ with $Ag \equiv 0 \pmod{N}$ and let $n_1 \in \mathbb{Z}^f$ with $n_1 \equiv g \pmod{N}$. Write $n_1 = g + Nm$ for some $m \in \mathbb{Z}^f$. Then

$$
e^{2 \pi i \frac{b n_1 A h}{N^2}} = e^{2 \pi i \frac{b g A h}{N^2}} e^{2 \pi i \frac{b m A h}{N}} = e^{2 \pi i \frac{b g A h}{N^2}} e^{2 \pi i \frac{b m A h}{N}} = e^{2 \pi i \frac{b h A h}{N^2}}.
$$

In the last step we used that $Ah \equiv 0 \pmod{N}$, so that $b m A h / N$ is an integer. We therefore have:

$$
\sum_{n \in \mathbb{Z}^f \atop n \equiv h \pmod{N}} \left(\ell A n \right)^{r} e^{i \pi n A n / N^2} = \frac{i^k}{z^{k+r} \sqrt{\det(A)}} \sum_{g \equiv 0 \pmod{N}} \sum_{n_1 \equiv g \pmod{N}} \left(\ell A n_1 \right)^{r} e^{i \pi \left(-1/z\right) b n_1 A n_1 / N^2 + 2 \pi i b n_1 A h / N^2}.
$$
2.4. A SPACE OF THETA SERIES

\[
\begin{align*}
&= \frac{i^k}{z^{k+r}} \sqrt{\det(A)} \sum_{g \mod N} e^{2\pi i \frac{\langle A g, h \rangle}{N^2}} \sum_{n_1 \in \mathbb{Z}/N} (\ell \langle A n \rangle)^r e^{\pi i (-1/z) \frac{\langle A n, A g \rangle}{N^2}}.
\end{align*}
\]

Interchanging \(z \) and \(-1/z\), we obtain:

\[
\sum_{n \in \mathbb{Z}/N} (\ell \langle A n \rangle)^r e^{\pi i (-1/z) \frac{\langle A n, A g \rangle}{N^2}} = \frac{(-1)^{k+r} i^{k+r}}{\sqrt{\det(A)}} \sum_{g \mod N} e^{2\pi i \frac{\langle A g, h \rangle}{N^2}} \sum_{n_1 \in \mathbb{Z}/N} (\ell \langle A n \rangle)^r e^{\pi i \frac{\langle A n, A g \rangle}{N^2}}.
\]

This implies that

\[
\theta(A, P, h, \left[\begin{array}{c} 1 \\ -1 \end{array} \right] \cdot z) = \frac{(-i)^{k+r} i^{k+r}}{\sqrt{\det(A)}} \sum_{g \mod N} e^{2\pi i \frac{\langle A g, h \rangle}{N^2}} \theta(A, P, g, z), \quad (2.6)
\]

which is equivalent to (2.4).

Next, let \(b \in \mathbb{Z} \). We have

\[
\theta(A, P, h, z) \bigg|_{k+r} \left[\begin{array}{c} 1 \\ b/N \end{array} \right] = \theta(A, P, h, z + b)
\]

\[
= \sum_{n \in \mathbb{Z}/N} P(n) e^{2\pi i (z+b) \frac{Q(n)}{N^2}}
\]

\[
= \sum_{n \in \mathbb{Z}/N \mod_h} P(n) e^{2\pi i b \frac{Q(n)}{N^2}} e^{2\pi i z \frac{Q(n)}{N^2}}.
\]

Let \(n \in \mathbb{Z}/N \) be such that \(n \equiv h \mod N \). Let \(m \in \mathbb{Z}/N \) be such that \(n = h + Nm \). Then

\[
2Q(n) = \langle h + Nm, A(h + Nm) \rangle
= \langle h + Nm, A(h + Nm) \rangle
= \langle h, Ah \rangle + 2N \langle m, Ah \rangle + N^2 \langle m, Am \rangle
\equiv \langle h, Ah \rangle \mod 2N^2
\equiv 2Q(h) \mod 2N^2.
\]

Here \(\langle h, Ah \rangle \equiv 0 \mod N \) because \(Ah \equiv 0 \mod N \) and \(\langle m, Am \rangle \equiv 0 \mod 2 \) because \(A \) is even. It follows that \(Q(n) \equiv Q(h) \mod N^2 \). Hence,

\[
\theta(A, P, h, z) \bigg|_{k+r} \left[\begin{array}{c} 1 \\ b/N \end{array} \right] = e^{2\pi i \frac{Q(h)}{N^2}} \sum_{n \in \mathbb{Z}/N \mod_h} P(n) e^{2\pi i z \frac{Q(n)}{N^2}}.
\]
50 \hspace{1cm} \textbf{CHAPTER 2. THETA SERIES ON THE UPPER HALF-PLANE}

\[= e^{2\pi i b \frac{Q(h)}{N^2}} \theta(A, P, h, z). \]

This is (2.5).

Finally, the vector space \(V(A, P) \) is mapped into itself by \(\text{SL}(2, \mathbb{Z}) \) via the \(|k+ \) right action because \(\text{SL}(2, \mathbb{Z}) \) is generated by the matrices
\[
\begin{bmatrix}
-1 & 1 \\
1 & 1
\end{bmatrix}
\]
and because (2.4) and (2.5) hold. \(\square \)

\textbf{Lemma 2.4.2.} Let \(f \) be a positive even integer, and define \(k = f/2 \). Let \(A \in \text{M}(f, \mathbb{Z}) \) be an even symmetric positive-definite matrix, and let \(N \) be the level of \(A \). Let \(c \) be a positive integer; by Corollary 1.5.6, the level of \(cA \) is \(cN \). Let \(r \) be a non-negative integer. We have \(\mathcal{H}_r(cA) = \mathcal{H}_r(A) \). Let \(h \in \mathbb{Z}^f \) be such that \(Ah \equiv 0 \pmod{N} \) and let \(P \in \mathcal{H}_r(A) \). If \(g \in \mathbb{Z}_f \) is such that \(g \equiv h \pmod{N} \), then \((cA)g \equiv 0 \pmod{cN} \) so that \(\theta(cA, P, g, \cdot) \) is defined, and

\[\theta(A, P, h, z) = \sum_{g \equiv h \pmod{cN}} \theta(cA, P, g, cz) \]

for \(z \in \mathbb{H}_1 \).

\textit{Proof.} If \(\ell \in \mathbb{C}^f \), then \(\ell A \ell = 0 \) if and only if \(\ell(cA) \ell = 0 \); this observation, and the involved definitions, imply that \(\mathcal{H}_r(cA) = \mathcal{H}_r(A) \). Next, let \(z \in \mathbb{H}_1 \). Then:

\[\theta(A, P, h, z) = \sum_{n \in \mathbb{Z}^f} P(n) e^{2\pi i z \frac{Q(n)}{N^2}} \]

\[= \sum_{g \in \mathbb{Z}^f/cN \mathbb{Z}^f} \sum_{n_1 \in cN \mathbb{Z}^f} P(g + n_1) e^{2\pi i z \frac{Q(g + n_1)}{N^2}}. \]

Let \(g \in \mathbb{Z}^f \) with \(g \equiv h \pmod{N} \). There is a bijection

\[cN \mathbb{Z}^f \xrightarrow{\sim} \{ m \in \mathbb{Z}^f : m \equiv g \pmod{cN} \} \]

given by \(n_1 \mapsto m = g + n_1 \). Hence,

\[\theta(A, P, h, z) = \sum_{g \equiv h \pmod{cN}} \sum_{m \equiv g \pmod{cN}} P(m) e^{2\pi i z \frac{Q(m)}{N^2}} \]

\[= \sum_{g \equiv h \pmod{cN}} \sum_{m \equiv g \pmod{cN}} P(m) e^{\pi i z \frac{b_m A_m}{cN^2}} \]

\[= \sum_{g \equiv h \pmod{cN}} \sum_{m \equiv g \pmod{cN}} P(m) e^{\pi i z \frac{b_m A_m}{(cN)^2}} \]
where in the last step we used that Lemma 2.4.3.

2.4. A SPACE OF THETA SERIES

Let f be a positive even integer. Let $A \in M(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Let

$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}),$$

and assume that $c \neq 0$. Let

$$Y = \{ m \in \mathbb{Z}^f : A m \equiv 0 \pmod{N} \}.$$

Define a function

$$s_\alpha : Y \times Y \rightarrow \mathbb{C}$$

by

$$s_\alpha(g_1, g_2) = \sum_{g \pmod{cN}, g \equiv h \pmod{N}} e^{2\pi i \left(\frac{sQ(g) + b g_1 A g + dQ(g_1)}{cN^2} \right)}.$$

The function s_α is well-defined. If $g_1, g_1', g_2, g_2' \in Y$ and $g_1 \equiv g_1' \pmod{N}$ and $g_2 \equiv g_2' \pmod{N}$, then $s_\alpha(g_1, g_2) = s_\alpha(g_1', g_2')$. Moreover,

$$s_\alpha(g_1, g_2) = e^{-2\pi i \left(\frac{b g_2 A g_1 + b dQ(g_1)}{cN^2} \right)} s_\alpha(0, g_2 - dg_1) \quad \text{(2.7)}$$

for $g_1, g_2 \in Y$.

Proof. To prove that s_α is well-defined, let $g_1, g_2 \in Y$, and $g, g' \in \mathbb{Z}^f$ with $g \equiv g' \pmod{cN}$ and $g \equiv g' \equiv g_2$ (mod N). Write $g' = g + cN m$ for some $m \in \mathbb{Z}^f$. Then

$$e^{2\pi i \left(\frac{sQ(g') + b g_1 A g + dQ(g_1)}{cN^2} \right)} = e^{2\pi i \left(\frac{sQ(g + cN m + b g_1 A (g + cN m) + dQ(g_1)}{cN^2} \right)}$$

$$= e^{2\pi i \left(\frac{sQ(g + cN m) + sQ(g_1) + b cN A (g + cN m) + dQ(g_1)}{cN^2} \right)}$$

$$= e^{2\pi i \left(\frac{sQ(g) + b g_1 A g + dQ(g_1) + sQ(g_1) + b cN A (g_1) m + dQ(g_1)}{cN^2} \right)}$$

$$= e^{2\pi i \left(\frac{sQ(g) + b g_1 A g + dQ(g_1)}{cN^2} \right)},$$

where in the last step we used that $Ag \equiv Ag_1 \equiv 0 \pmod{N}$. It follows that s_α is well-defined.

Next we prove (2.7). Let $g_1, g_2 \in Y$. Then

$$e^{-2\pi i \left(\frac{b g_2 A g_1 + b dQ(g_1)}{cN^2} \right)} s_\alpha(0, g_2 - dg_1)$$

$$= \sum_{g \pmod{cN}, g \equiv g_2 - dg_1 \pmod{N}} e^{-2\pi i \left(\frac{b g_2 A g_1 + b dQ(g_1)}{cN^2} \right)} e^{2\pi i \left(\frac{sQ(g)}{cN^2} \right)}$$
\[\sum_{g \equiv g_2 \ (\text{mod} \ N)} e^{2\pi i \left(\frac{sQ(g) - hc \cdot g \cdot y_1 + hdQ(y_1)}{cN^2} \right)} \]

Let \(g \in \mathbb{Z}_f \) with \(g \equiv g_2 \ (\text{mod} \ N) \). Write \(g_2 = g + Nm \) for some \(m \in \mathbb{Z}_f \). Then

\[e^{2\pi i \left(\frac{b_1 Q \cdot (adg - bg_2)}{cN^2} \right)} s_\alpha(0, g_2 - dg_1) = \sum_{g \equiv g_2 \ (\text{mod} \ N)} e^{2\pi i \left(\frac{sQ(g) + b_1 Q \cdot (adg - bg_2)}{cN^2} \right)}, \]

where the last step follows because \(Ag_1 \equiv 0 \ (\text{mod} \ N) \). We therefore have:

\[e^{-2\pi i \left(\frac{b_1 Q g_2 g_1 + hdQ(g_1)}{N^2} \right)} s_\alpha(0, g_2 - dg_1) = \sum_{g \equiv g_2 \ (\text{mod} \ N)} e^{2\pi i \left(\frac{sQ(g) + b_1 Q \cdot (adg - bg_2)}{cN^2} \right)} \]

This completes the proof of (2.7).

Finally, let \(g_1, g'_1, g_2, g'_2 \in Y \) with \(g_1 \equiv g'_1 \ (\text{mod} \ N) \) and \(g_2 \equiv g'_2 \ (\text{mod} \ N) \). It is evident from the definition of \(s_\alpha \) that \(s_\alpha(g_1, g_2) = s_\alpha(g'_1, g'_2) \). Write \(g'_1 = g_1 + Nm \) for some \(m \in \mathbb{Z}_f \). Then

\[s_\alpha(g'_1, g_2) = e^{-2\pi i \left(\frac{b_1 Q g'_1 + hdQ(g'_1)}{N^2} \right)} s_\alpha(0, g_2 - dg'_1) \]

\[= e^{-2\pi i \left(\frac{b_1 Q (g_1 + Nm) + hdQ(g_1 + Nm)}{N^2} \right)} s_\alpha(0, g_2 - d(g_1 + Nm)) \]

\[= e^{-2\pi i \left(\frac{b_1 Q g_1 + hdQ(g_1)}{N^2} \right)} s_\alpha(0, g_2 - dg_1 - dNm) \]

\[= e^{-2\pi i \left(\frac{b_1 Q g_1 + hdQ(g_1)}{N^2} \right)} s_\alpha(0, g_2 - dg_1) \]

Here we used that \(Ag_1 \equiv Ag_2 \equiv 0 \ (\text{mod} \ N) \). This completes the proof. \(\square \)
Lemma 2.4.4. Let f be a positive even integer, and define $k = f/2$. Let $A \in M(f, \mathbb{Z})$ be an even symmetric positive-definite matrix, and let N be the level of A. Define the quadratic form $Q(x)$ in f variables by

$$Q(x) = \frac{1}{2} x^T A x.$$

Let r be a non-negative integer, and let $P \in \mathcal{H}_r(A)$. Let $h \in \mathbb{Z}^f$ be such that $Ah \equiv 0 \pmod{N}$.

Let

$$\alpha = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{SL}(2, \mathbb{Z}),$$

and assume that c is a positive integer. Then

$$\theta(A, P, h, z) \mid_{k+r} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{i^{k+2r} c^{k} \sqrt{\det(A)}} \sum_{g \pmod{cN}} s_{\alpha}(g, h) \cdot \theta(A, P, g, z),$$

where s_{α} is defined in Lemma 2.4.3.

Proof. We have

$$\theta(A, P, h, z) \mid_{k+r} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = j(\alpha, z)^{-k-r} \theta\left(A, P, h, \frac{az+b}{cz+d}\right)$$

$$= j(\alpha, z)^{-k-r} \sum_{g \pmod{cN}} \theta\left(cA, P, g, c \cdot \frac{az+b}{cz+d}\right)$$

$$= j(\alpha, z)^{-k-r} \sum_{g \pmod{cN}} \theta\left(cA, P, g, -\frac{1}{cz+d} + a\right)$$

$$= j(\alpha, z)^{-k-r} \sum_{g \pmod{cN}} e^{2\pi i a \frac{Q(cA, g)}{cz+d}} \theta\left(cA, P, g, -\frac{1}{cz+d}\right)$$

$$= (-1)^{k+r} \sum_{g \pmod{cN}} e^{2\pi i a \frac{Q(g)}{cz+d}} \left(\theta(cA, P, g, \cdot) \mid_{k+r} \begin{bmatrix} 1 \\ -1 \end{bmatrix}\right)(cz+d).$$
\[
\frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g \mod cN} e^{2\pi i a \frac{Q(g)}{cN}} g \quad \text{for } g \equiv h \mod (cN)
\]

\[
= \sum_{g_1 \mod (cN)} e^{2\pi i \frac{g_1(cA)g}{(cN)^2}} \Omega(cA, P, g_1, cz + d)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g \mod cN} e^{2\pi i a \frac{Q(g)}{cN}}
\]

\[
\sum_{g_1 \mod (cN)} e^{2\pi i \frac{g_1(cA)g}{(cN)^2}} e^{2\pi i d \frac{Q(g_1)}{cN}} \Omega(cA, P, g_1, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g \mod cN} e^{2\pi i a \frac{Q(g)}{cN}}
\]

\[
\sum_{g_1 \mod (cN)} e^{2\pi i \frac{g_1(cA)g}{(cN)^2}} e^{2\pi i d \frac{Q(g_1)}{cN}} \Omega(cA, P, g_1, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \mod cN, (cA)g_1 \equiv 0, g \equiv h \mod (cN)}
\]

\[
\left(e^{2\pi i \frac{g_1(cA)g}{(cN)^2}} \right) \Omega(cA, P, g_1, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \mod cN, (cA)g_1 \equiv 0 \mod cN} s_\alpha(g_1, h) \Omega(cA, P, g_1, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \mod cN, (cA)g_1 \equiv 0 \mod cN} \Omega(cA, P, g_1, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \in \mathbb{Z}/(cN)} \sum_{m \in \mathbb{Z}/(cN)} s_\alpha(g_1 + m, h) \Omega(cA, P, g_1 + m, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \in \mathbb{Z}/(cN)} \sum_{m \in \mathbb{Z}/(cN)} \Omega(cA, P, g_1 + m, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \in \mathbb{Z}/(cN)} \sum_{m \in \mathbb{Z}/(cN)} s_\alpha(g_1, h) \sum_{m \in \mathbb{Z}/(cN)} \Omega(cA, P, g_1 + m, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \in \mathbb{Z}/(cN)} \sum_{m \in \mathbb{Z}/(cN)} \Omega(cA, P, g_1 + m, cz)
\]

\[
= \frac{i^k(-1)^{k+r}}{\sqrt{\det(cA)}} \sum_{g_1 \in \mathbb{Z}/(cN)} \sum_{m \in \mathbb{Z}/(cN)} \sum_{g' \equiv g_1 \mod (cN)} \Omega(cA, P, g', c)
\]

\[
= \frac{1}{i^{k+2r}c^k\sqrt{\det(A)}} \sum_{g_1 \mod (cN)} s_\alpha(g_1, h) \cdot \Omega(A, P, g_1, z).
\]
2.4. A SPACE OF THETA SERIES

Here, we used Lemma 2.4.3.
Appendix A

Some tables

A.1 Tables of fundamental discriminants

<table>
<thead>
<tr>
<th>Discriminant</th>
<th>Factored Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3 = -3$</td>
<td>$-35 = (-7) \cdot 5$</td>
</tr>
<tr>
<td>$-4 = -4$</td>
<td>$-39 = (-3) \cdot 13$</td>
</tr>
<tr>
<td>$-7 = -7$</td>
<td>$-40 = (-8) \cdot 5$</td>
</tr>
<tr>
<td>$-8 = -8$</td>
<td>$-43 = -43$</td>
</tr>
<tr>
<td>$-11 = -11$</td>
<td>$-47 = -47$</td>
</tr>
<tr>
<td>$-15 = (-3) \cdot 5$</td>
<td>$-51 = (-3) \cdot 17$</td>
</tr>
<tr>
<td>$-19 = -19$</td>
<td>$-52 = (-4) \cdot 13$</td>
</tr>
<tr>
<td>$-20 = (-4) \cdot 5$</td>
<td>$-55 = (-11) \cdot 5$</td>
</tr>
<tr>
<td>$-23 = -23$</td>
<td>$-56 = (-7) \cdot 8$</td>
</tr>
<tr>
<td>$-24 = (-3) \cdot 8$</td>
<td>$-59 = -59$</td>
</tr>
<tr>
<td>$-31 = -31$</td>
<td>$-67 = -67$</td>
</tr>
</tbody>
</table>

$-68 = (-4) \cdot 17$
$-71 = -71$
$-79 = -79$
$-83 = -83$
$-84 = (-4) \cdot (-3) \cdot (-7)$
$-87 = (-3) \cdot 29$
$-88 = (-11) \cdot 8$
$-91 = (-7) \cdot 13$
$-95 = (-19) \cdot 5$

Table A.1: Negative fundamental discriminants between -1 and -100, factored into products of prime fundamental discriminants.
$1 = 1$	$37 = 37$	$73 = 73$
$5 = 1$	$40 = 8 \cdot 5$	$76 = (-4) \cdot (-19)$
$8 = 8$	$41 = 41$	$77 = (-7) \cdot (-11)$
$12 = (-4)(-3)$	$44 = (-4) \cdot (-11)$	$85 = 5 \cdot 17$
$13 = 13$	$53 = 53$	$88 = (-8) \cdot (-11)$
$17 = 17$	$56 = (-8) \cdot (-7)$	$89 = 89$
$21 = (-3)(-7)$	$57 = 57$	$92 = (-4) \cdot (-23)$
$24 = (-8)(-3)$	$60 = (-4) \cdot (-3) \cdot 5$	$93 = (-3) \cdot (-31)$
$28 = (-4)(-7)$	$61 = 61$	$97 = 97$
$29 = 29$	$65 = (-8) \cdot (-7)$	
$33 = 33$	$69 = (-3)(-23)$	

Table A.2: Positive fundamental discriminants between 1 and 100, factored into products of prime fundamental discriminants.
Index

adjoint, 23

determinant, 20
Dirichlet character, 1
 conductor, 3
 induced, 3
 Legendre symbol, 3
 primitive, 3
 principal, 2
 product, 5
discriminant, 21

even integral symmetric matrix, 19
 level, 25
extension of a Dirichlet character, 1

Fourier transform, 34

fundamental discriminant, 6
 prime, 6

Kronecker symbol, 16

Legendre symbol, 3

prime fundamental discriminant, 6

quadratic form, 20
 level, 25

real valued, 3

Schwartz function, 33

Schwartz space, 34

smooth function, 33

spherical functions, 45
Bibliography

