
FFrreeqquueennccyy MMeeaassuurreemmeenntt UUssiinngg
IInnppuutt CCaappttuurree wwiitthh tthhee
CCeerreebboott MMXX77ccKK™™

Revision: 07 Dec 2017 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 1 of 18

Project 10: Frequency Measurement Using
Input Capture

Project 10: Frequency Measurement Using Input Capture ... 1

Purpose ... 2

Minimum Knowledge and Programming Skills ... 2

Equipment List ... 2

Software Resources ... 2

References ... 3

Analog to Digital Conversion... 3

Fundamentals of Frequency Measurement .. 4

Timer Setup for PWM and Input Capture ... 6

PIC32 Software for Timer 2 Setup for PWM and Timer Interrupt ... 7

PIC32 Software Timer Setup for Input Capture ... 8

Project Tasks ... 9

Project Specifications ... 10

Project Testing .. 12

mailto:rwall@uidaho.edu

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 2 of 18

Appendix A: Project 10 Parts Configuration ... 15

Appendix B: Motor Controller Wiring Diagram .. 15

Appendix C: PMod HB5 Half H-Bridge Drive ... 16

Appendix D: Geared DC Motor .. 16

Appendix E: PmodCLP ... 17

Appendix F: Period Measurement Resolution ... 17

Purpose
The purpose of this project is to use the PIC32 input capture to measure frequency. Using such
a frequency measurement will allow us to determine the speed of a DC motor. This project uses
a period measurement to determine frequency. Project 9 should be completed prior to
completing Project 10.

Minimum Knowledge and Programming Skills
1. Knowledge of C or C++ programming

2. Working knowledge of MPLAB ® X IDE

3. Understanding of PWM principles

4. Concepts of frequency measurements (bad link!)

5. Use of logic analyzer (7 channels will be simultaneously monitored)

Equipment List
1. Digilent Cerebot MX7cK processor board with USB cable

2. Microchip MPLAB ® X IDE

3. Microchip MPLAB ® XC32 Compiler

4. Digilent PmodCLP Parallel Character LCD

5. Digilent H-Bridge driver PMod

6. Digilent DC Motor

7. 8 Channel Logic analyzer (Digilent Analog Discovery)

Software Resources

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
https://en.wikipedia.org/wiki/Pulse-width_modulation
http://www.pttimeeting.org/archivemeetings/2005papers/paper67.pdf
http://ece.utep.edu/courses/web3376/Logic%20Analyzer.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_90.zip
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,403,625&Prod=MT-MOTOR
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 3 of 18

1. XC32 C/C++ Compiler Users Guide

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler

3. PIC32 Family Hardware Reference Manual Section 16 Output Compare

4. Cerebot MX7cK Board Reference Manual

5. MPLAB ® X Integrated Development Environment (IDE)

References
1. PIC32 Input Capture

2. Voltage to Frequency Converter

3. Using PWM to Generate Analog Output

4. C Programming Reference

Analog to Digital Conversion
Project 9 investigated methods of using a microprocessor to generate a variable amplitude
output. In Project 10, we will look at one method of using a microprocessor to measure a
variable-valued input. The PIC32 processor has 16 analog inputs channels for a 10-bit ADC.
However, we will use the DC motor tachometer to measure the analog speed value.
Considering that the motor speed is controlled by the average applied voltage, the tachometer
represents a voltage to frequency converter. Various silicon manufacturers offer electronic
devices that are used to generate a pulse waveform whose frequency is a function of the
voltage applied to the sensor input. Using the frequency of a digital pulse wave to represent an
analog signal has the advantages of higher signal to noise ratio and reduces sensitivity to circuit
impedance.

Project 9 implemented open loop speed control of a DC motor. This control approach depends
upon the proportionality of the motor speed to the applied voltage. Project 10 is designed to test
the linearity of open loop speed control by providing a tachometer to measure the rotor shaft
speed. The hardware requirements for Project 9 are the same as for Project 10. Details
concerning the hardware configuration for this project are provided in Appendix A through
Appendix E. The DC motor used on the Digilent Cerebot MX7cK Project System pictured in
Appendix D has two Hall Effect sensors that provide a pulse each time the DC motor shaft
makes a revolution. The two sensors are physically oriented around the motor rotor shaft such
that they generate two digital signals that oscillate at the same frequency but are out of phase
by 90 degrees. The SA and SB PmodHB5 Hall Effect sensor outputs form a quadrature encoder
that allows both the speed and direction of rotation to be measured. We are only concerned with
measuring the motor speed in Project 10.

http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://microchip.wikidot.com/mplab:_start
http://ww1.microchip.com/downloads/en/DeviceDoc/61122F.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00795a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf
http://www.w3schools.in/c-programming-language/intro/
http://ww1.microchip.com/downloads/en/DeviceDoc/61104E.pdf
http://en.wikipedia.org/wiki/Rotary_encoder

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 4 of 18

The speed of the geared output shaft is reduced by the ratio of 53 to 1 to provide greater
mechanical torque. The speed of the motor will be measured by determining the frequency of
the digital pulse wave generated by the Hall Effect sensor.

Fundamentals of Frequency Measurement
As with the measurement of any data, we are concerned with three parameters: accuracy,
resolution, and precision. The accuracy of a frequency measurement is dictated, to a large
extent, by the accuracy of the reference crystal or oscillator. For this project, we depend on the
accuracy of the oscillator populated on the Cerebot MX7cK processor board. The measurement
precision is a metric applied to the repeatability of a measurement. Resolution is the smallest
interval between two measurements. Accuracy is the difference between the measured value
and an absolute standard (the “truth”). Measurement precision and resolution are determined by
the processing of the measured data. The subject of frequency measurement resolution is of
great interest and is addressed in greater detail in the following paragraphs.

There are two methods of estimating the frequency of the tachometer. The number of signal
transitions (rising, falling, or both) in a fixed time interval can be counted, or the time interval
between two consecutive signal transitions can be measured using a timer. Measuring
frequency by counting transitions over short intervals is more accurate for signals when the
frequency of the signal being measured is high relative to the observation interval. This results
in many hundreds or even thousands of cycles being counted during the measurement interval,
thus providing a high frequency measurement resolution.

Measuring the period is generally more precise for relatively low frequency signals. The
resolution is provided by the number of timer counts between input signal transitions. The
measurement period now depends of the frequency of the input signal and, for very low
frequency signals, may result in excessively long delays between measurement updates.

There are methods to mitigate the effects of long measurement periods for low frequency
signals. One method is to use frequency multiplication with a phased locked loop (PLL) circuit.
Most modern microcontrollers and microprocessors use frequency multiplication so that the core
speed of the processor is many times the processor crystal frequency. The PIC32 processor
family uses a phase locked loop multiplier to set the core frequency by a parameter in the
config_bits.h file. Another method for handling the measurement of signals with long periods is
to use clocks that run at very low frequencies.

For Project 10, you will measure the speed of the motor rotor shaft by computing the period
between two successive pulses of the motor tachometer by capturing a timer count on each
falling transition. In order to achieve precise measurements the period must be measured with
high resolution. This requires that the timer be counting at a much higher rate than the period of
the of the tachometer signal. The precision of the frequency estimate is preserved by inverting
the period using floating point variables or fixed point math divide algorithms.

http://www.tutelman.com/golf/measure/precision.php
http://www.tutelman.com/golf/measure/precision.php
http://www.spectracomcorp.com/Desktopmodules/Bring2Mind/DMX/Download.aspx?EntryId=446&PortalId=0
http://en.wikipedia.org/wiki/Phase-locked_loop
http://online.medphys.org/resource/1/mphya6/v35/i1/p81_s1?isAuthorized=no

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 5 of 18

The challenge is to select the timer input clock rate that will provide adequate period accuracy
across the range of possible tachometer frequencies. The maximum number of counts is 65535
timer increments. Using a peripheral bus clock (PBCLK) frequency of 10 MHz and a timer pre-
scale value of 256, the minimum measurable frequency is 0.596 Hz but will require 1.68
seconds to get a measurement update. The maximum measurable frequency, corresponding to
one timer count, is 39 kHz, but the resolution degrades to 39 kHz. A signal frequency of 197.6
Hz will result in a 1 Hz resolution (Equation 1).

Granularity is a relative term that relates to the coarseness of a measurement. Higher
granularity means lower resolution1. From the derivation shown in Appendix F, resolution of the
frequency measurement when using a timer to measure the signal period can be determined
using the equation:

∆𝐹 = T3PD
𝑇𝑆𝐼𝐺𝑁𝐴𝐿

∙ FSIGNAL = T3PD FSIGNAL2 Eq. 1

where FSIGNAL = 1/TSIGNAL and T3PD = T3PRESCALE/PBCLK

Eq. 1 shows that, for a fixed timer clock frequency, the granularity of the frequency
measurement, ∆F, increases as the square of the input frequency and has dimension of Hz. As
Figure 1 illustrates, a higher input frequency will result in a measurement with higher granularity
for a given measurement interval. Better resolution (finer granularity) is achieved by increasing
the clock frequency or reducing input frequency.

Measuring a signal frequency by computing the inverse of the signal period will generate a new
measurement update at the signal frequency. Provided that the input signal has a 50% duty
cycle, we can get two frequency measurements per cycle of the input signal by determining the
period when the input is high and the period when it is low. Measurement noise can be reduced
by averaging multiple period measurements.

The speed of the motor is proportional to the frequency of the signal generated by the motor
tachometer. The motor that we are using has a reduction gear with a ratio of 53:1. Using a 10V
motor supply, the maximum motor speed will be approximately 525 revolutions per second
(RPS) or 594 RPM on the output of the gear head. Due to motor power limitations and gear
head friction, the minimum motor speed is approximately 79.5 RPS which is equivalent to 90
RPM as measured on the gear-head output shaft.

1 Avoid using these terms!

https://en.wikipedia.org/wiki/Granularity

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 6 of 18

Figure 1. Plot of frequency measurement resolution for a fixed clock frequency.

Timer Setup for PWM and Input Capture
For this project, we will use two PIC32 timers: one for generating the PWM output that controls
the motor speed (Timer 2), and one that will be used to capture the time when the tachometer
signal transitions from low to high or high to low (Timer 3). The reason for using two timers is
that the period register of the two timers are set to different values in order to achieve different
design objectives. The period register of the timer used for generating the PWM signal is set to
give a particular PWM cycle frequency. The period register of the timer used for measuring the
period of the tachometer signal is set to the maximum value to allow the period measurement of
an input signal over a wider range of frequencies. The lower the frequency on the input signal,
the more timer counts that will be measured. The period measurement will be incorrect if the
timer resets after reaching the terminal count more than once between input signal transitions.
Hence, the period register for the timer that is used for timer capture will be set to its maximum
value, 65536.

The ReadCapture() function from the peripheral library uses a pointer to an array of unsigned
integers (32 bits), even though the timer is only 16 bits. In order to correctly compute the
number of timer increments in the event of timer rollover between two samples we must treat
the values in the array as unsigned short int data types. For example, consider the case when
the first captured timer value is 0xFE3E (65086 in decimal) and the second 0x0096 (150). The
result of (0x0096 – 0xFE3E) is 0x0258 (600) – the true interval in timer increments. A more
thorough discussion of time interval issues is provided in the section titled, “Handling Timer
Rollover for Hardware Assisted Delays” in Project 2.

0 100 200 300 400 500
0

2

4

6

8
Frequency Measurement Resolution vs Input Signal Frequency

Signal Frequency - Hz

R
es

ol
ut

io
n

- H
z

∆F f

f

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 7 of 18

PIC32 Software for Timer 2 Setup for PWM and Timer
Interrupt

Timer 2 will serve two functions: it will be used to generate the PWM signal and it will generate
an interrupt once each millisecond. The one millisecond interrupt will be used for hardware
timing. Configure Timer 2 for operations as follows:

1. Configure Timer 2 from 1ms period
a. OpenTimer2(T2config_bits, PR2_value); where (PR2_value + 1) is the period

register value computed for the PWM cycle frequency.
i. T2config_bits = (T2_ON | T2_Ps_1_1 | T2SOURCE_INT)
ii. PR2 = (10000-1) for PBCLK = 10MHz

2. Configure Output Compare for 1ms PWM cycle period

a. OpenOCx(OC_configure_bits, nOCxRS, nOCxR); where nOCxRS is the initial
value written to the OCxRS register and nOCxR is the initial value written to the
OCxR register. “x” designates the specific OC register being configured in the
range of 1 through 5.

i. OC_configure_bits (b1 | b2 | b3 | b4)
1. b1 = OC_ON //Enables the Output compare processor resource
2. b2 = OC_TIMER_MODE16 // Timer uses 16 bit mode
3. b3 = OC_TIMER2_SRC // Selects Timer 2 as input timer
4. b4 = OC_PWM_FAULT_PIN_DISABLE // Don’t use fault pin

ii. Output Compare Registers
1. nOCxRS – This is a constant or a variable that specifies the initial

PWM compare value
2. nOCxR – This is a constant or a variable that specifies the next

PWM compare value

Refer to the Section 13 of the C32 Peripheral Library Guide for option details.

b. Example: OpenOC3(OC_configure_bits, nOC3RS, nOC3R);

3. Timer 2 interrupt using peripheral library macro functions
a. mT2SetIntPriority(2); // Set Timer 2 interrupt group priority level 2
b. mT2SetIntSubPriority(1); // Set Timer 2 interrupt subgroup priority 1
c. mT2IntEnable(1); // Enable T2 interrupts
d. Alternatively, using the C32 Peripheral Library function:

ConfigIntTimer2(T2_INT_ON | T2_INT_PRIOR_2 | T2_INT_SUB_PRIOR_1);

4. Timer 2 ISR code
void __ISR(_TIMER_2_VECTOR, ipl2) T2Interrupt(void);
{

LATBINV = LEDA; // Toggle LED A – instrumentation
mT2ClearIntFlag(); // Clear Timer 2 interrupt flag
// INTClearFlag(INT_T2); // Alternate peripheral library function

}

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 8 of 18

PIC32 Software Timer Setup for Input Capture

Timer 3 Interrupt Setup
Timer 3 will be used exclusively for a 16 bit input timer capture.

1. Configure Timer 3 to use the PBCLK and a pre-scale value of 256. Set Timer 3 PR3
register to 0xFFFF for maximum interval.

a. OpenTimer3(T3_ON | T3_PS_1_256 | T3_SOURCE_INT, 0xFFFF);
b. mT3SetIntPriority(2); // Set Timer 3 interrupt group priority 2
c. mT3SetIntSubPriority(2); // Set Timer 3 interrupt subgroup priority 2
d. mT3IntEnable(1); // Enable Timer 3 interrupts
e. Alternate to steps b through d using the C32 Peripheral Library function:

ConfigIntTimer3(T3_INT_ON | T3_INT_PRIOR_2 | T3_INT_SUB_PRIOR_2);

2. Timer 3 ISR
void __ISR(_TIMER_3_VECTOR, ipl2) T3Interrupt(void)
{

LATBINV = LEDC; // Toggle LEDC - Timing instrumentation
mT3ClearIntFlag(); // Clear Timer 3 interrupt flag –
// INTClearFlag(INT_T3); // Alternate peripheral library function

 }

Input Capture Initialization
1. Set motor Hall effect outputs SA (RD3) and SB (RD12 - IC5) as inputs. MTR_SA is set

as an input but is not used for this application because RD3 is not a designated input
capture pin. (Note: MTR_SA and MTR_SB must be defined appropriately.)

a. PORTSetPinsDigitalIn(IOPORT_D, (MTR_SA | MTR_SB));
2. Clear pending input capture interrupts

a. mIC5ClearIntFlag();

3. Use input capture channel 5 for the following options. An interrupt will be generated on
each falling edge of the input signal.
void OpenCapture5(c1 | c2 | c3 | c4 | c5 | c6 | c7); // Note the logical OR!!!2

a. c1 = IC_ON // Enable input capture
b. c2 = IC_CAP_16BIT // Capture a 16 bit timer count
c. c3 = IC_IDLE_STOP // Stop input capture during debug
d. c4 = IC_FEDGE_FALL // Initial capture on falling edge
e. c5 = IC_TIMER3_SRC //Use Timer 3 as time to capture
f. c6 = IC_INT_1CAPTURE // Generate interrupt on each capture
g. c7 = IC_EVERY_ FALL_EDGE // Capture time on each falling edge

2 The sample code on p. 176 of the Peripheral Library Guide incorrectly uses logical AND.

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 9 of 18

4. Configure the Input Capture interrupt as follows
a. ConfigIntCapture5(ic1 | ic2 | ic3);

i. ic1 = IC_INT_ON // Enable input capture interrupt
ii. ic2 = IC_INT_PRIOR_3 // Set priority for level 3
iii. ic3 = IC_INT_SUB_PRIOR_0 // Set sub priority for level 0

b. Example:
ConfigIntCapture5(IC_INT_ON | IC_INT_PRIOR_3 | IC_INT_SUB_PRIOR_0);

Input Capture ISR Example
void __ISR(_INPUT_CAPTURE_5_VECTOR, ipl3) Capture5(void)
{

static unsigned int con_buf[4]; // Declare an input capture buffer
// Declare three time capture variables:
static unsigned short int t_new; // Most recent captured time
static unsigned short int t_old = 0; // Previous time capture
static unsigned short int time_diff; // Time between captures

LATVBINV = LEDD //Toggle LEDD on each input capture interrupt
ReadCapture5(con_buf); // Read captures into buffer
t_new = con_buf[0]; // Save time of event
time_diff = t_new – t_old; // Compute elapsed time in timer “ticks”
t_old = t_new; // Replace previous time capture with new
// Compute motor speed in RPS (revolutions per second) and save as global variable3
// Details left as an exercise for the Reader
mIC5ClearIntFlag(); // Clears interrupt flag
// INTClearFlag(INT_IC5); // Alternate peripheral library function

}

Project Tasks
The objective for this project is to implement a motor speed tachometer by measuring the
frequency of the motor shaft sensor.

1. Develop code that generates the PWM signal
a. Initialize the PWM duty cycle to 40%
b. Toggle LEDA each Timer 2 interrupt
c. Set LEDB at the start of a CN ISR and clear LEDB at the end of the CN ISR
d. Toggle LEDC each Timer 3 interrupt
e. Toggle LEDD each input capture interrupt

3 Compute the motor speed as a moving average of at least ten samples.

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 10 of 18

2. Write and verify the C code to complete the button control and LCD display design
specified below.

3. Connect the logic analyzer probes as follows to demonstrate that the PWM output and
Timer 2 interrupts continue to function while the CN interrupt is being served.

a. Channel 0: LEDA – Measures Timer 2 interrupt timing
b. Channel 1: LEDB – Measures the ISR duration that detects a button press
c. Channel 2: LEDC– Measures Timer 3 interrupt timing
d. Channel 3: LEDD – Measures the Input capture timing
e. Channel 4: PmodHB5_EN – PWM output signal
f. Channel 5: PmodHB5_SA – Motor tachometer Phase A
g. Channel 6: PmodHB5_SB – Motor tachometer Phase B

4. Capture the logic analyzer screen for the four PWM duty cycle settings specified in Table

I. (See item three under project testing.)

Table I. Button controlled PWM duty cycle

BTN2 BTN1 PWM
OFF OFF 40%
OFF ON 65%
ON OFF 80%
ON ON 95%

Project Specifications

1. Operating Requirements:
a. Foreground operations: (operations implemented from ISR)

i. Toggles LEDA in the Timer 2 ISR at the 500 Hz rate (LEDA is toggled at
one half of the PWM cycle frequency)

ii. Detect button uses the change-notice interrupt similar to the Project 5
implementation.

1. The CN interrupt is to use a 20 ms software delay for switch
debounce

2. LEDB is turned on for the duration of the CN ISR.
3. Sets the PWM output as a function of the states of buttons BTN1

and BTN2 as specified in Table I
iii. Toggles LEDC for each Timer 3 interrupt (1.68 second period) (the

maximum time before a Timer 3 roll-over)
iv. Toggles LEDD each time the input capture ISR is serviced (the speed of

the DC motor)

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 11 of 18

v. Writes the PWM percent duty cycle to line 1 of the LCD whenever the
buttons change the %PWM (Hint: Generate a function the positions the
LCD cursor to a fixed position. Then write a fixed length character string
to update the element of the display.)

b. Background operation:
i. Updates the motor speed measurement (RPM) on line 2 of the LCD

display at the rate of once each 100ms as determined by the software
delay function, “DelayMs”, that can be preempted

ii. Clear only line 2 of the LCD and display the measured revolutions per
second as RPS = xxx.xx

iii. The LCD updates must be protected from CN interrupts

2. Software Organization:
a. “main”

i. Calls application initialization function that completes the following:
1. Cerebot MX7ck board configured inputs for BTN1 and BTN2
2. Cerebot MX7ck board configured outputs for PmodSTEP LEDA

through LEDD
3. Timer 2 to generate an interrupt each millisecond.
4. The PWM output channel as follows

a. Use output compare 3 (OC3)
b. Uses Timer 2 for the time base for the output compare
c. PWM cycle frequency of 1000 Hz

5. Timer 3 to generate an interrupt every 1.68 seconds. (Prescale of
256 and a period of 0xFFFF.)

6. Input Capture (See Input Capture ISR Example)
a. Use Input Capture 5
b. Trigger on each falling edge of the input pin IC5 (RD12)

7. Use a 16 bit timer
a. Use Timer 3 as time reference

8. Initialize a CN interrupt for button status detection at priority 1 and
the sub priority level 0.

9. LCD initialization with a function added to position the LCD cursor
at any position. (Refer to Project 6 for LCD programming)

ii. Executes a while(1) loop (background operations)
1. Updates the motor speed measurement (RPM) on line 2 of the

LCD display at the rate of once each 100ms as determined by the
software delay function, “DelayMs”, that can be preempted

2. Clear only line 2 of the LCD and display the measured revolutions
per second as RPS = xxx.xx

3. The LCD updates must be protected from CN interrupts
b. Button Detect ISR (refer to Project 5)

i. Sets LEDB on entry and clears LEDB on exit
ii. Remove button contact bounce with 20ms software delay
iii. Reads button state
iv. Decodes buttons and sets PWM in accordance with Table I
v. Sets the motor PWM
vi. Updates only line 1 of the LCD reporting the % PWM using the format:

PWM = ##%

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 12 of 18

vii. Clears CN interrupt flag
c. Timer2 ISR

i. Toggles LEDA
ii. Clears T2 interrupt flag

d. Timer 3 ISR
i. Toggle LEDC
ii. Clear T3 interrupt flag

e. Input capture ISR
i. Clears input capture interrupt flag.
ii. Toggles LEDD
iii. Computes the time interval since the last input capture interrupt
iv. Computes a moving average of motor speed – RPS (global variable)4

Project Testing
The DC motor control block diagram is shown in Appendix B, The Hall Effect device output
labeled SB is connected to the IC5 / RD12 pin. Consequently, we will be configuring the
PIC32 to use input capture channel 5. Refer to the OpenCapture topic in the C32 peripheral
library for the setting of the input capture module.

1. Connect the test equipment to the Cerebot MX7cK using a logic analyzer as follows:
a. Connect the logic analyzer CH 0 through CH 3 probes to the test points for LEDA

through LEDD on the PmodSTEP.

b. Connect logic analyzer CH 4 probe to the test point for the PWM EN pin on the
PmodHB5.

c. Connect logic analyzer probes for CH 5 and 6 to the test points for the SA and

SB pins on the PmodHB5
.

2. Run the Project 10 program to record the measurements indicated in Table II for the
case when the PWM is set to 65%. Measure and record the motor supply voltage.

Table II.
Instrumentation TP Function Measurement – Hz
PmodSTEP LEDA PWM cycle frequency (Timer2)
PmodSTEP LEDB Length of CN interrupt
PmodSTEP LEDC Input capture timer frequency (Timer3)
PmodSTEP LEDD Input capture frequency

PmodH5 EN PWM waveform
PmodH5 SA Tachometer frequency
PmodH5 SB Tachometer frequency

3. Provide a screen capture of the seven signals instrumented to complete Table II. An

example plot is shown in Figure 2. (Note: LEDC and LEDD were swapped below.)

4 Minimum of ten samples.

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 13 of 18

Figure 2. Screen capture of the seven monitored signals.

4. Complete Table III and graph the frequency measured at the PmodHB5 SB pin versus
the percent PWM duty cycle specified in Table I. A sample plot of this data is provided in
Figure 3.

Table III. Motor Tachometer frequency for button controlled PWM duty cycle

BTN2 BTN1 PWM SB – Hz
OFF OFF 40%
OFF ON 65%
ON OFF 80%
ON ON 95%

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 14 of 18

Figure 3. Sample Plot of DC motor speed as a function of PWM duty cycle

0

100

200

300

400

500

600

0 20 40 60 80 100

Speed vs % PWM Duty Cycle (Sample)

Speed

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 15 of 18

Appendix A: Project 10 Parts Configuration

2X16
Character

LCD
PMCLP
PMod

PC
MPLAB

IDE

Cerebot PIC32
MX7ck

Pmod
JD7:12

PmodHB5
H Bridge

Driver

PMP Data Bus - JB

PMP Ctrl Bus – JC
Pins 7, 8, and 9

RB2:10 – JA
(5V

Operation)

DEBUG USB
(5V PWR)

Push
Buttons
BTN1 &
BTN2

PG.6
PG.7

Test Point Header

PmodTPH

10VDC

DC Motor
with

Tachometer

PmodSTEP
LED and

Test Points

Figure 4. Block diagram of the equipment used in Project 7.

Appendix B: Motor Controller Wiring Diagram

HB5
DIR

EN
1

2

VCC

GND

G
N

D

+1
0V

Power Supply

6

5

SA

SB
3

4

JD7

JD8

JD9

JD10

OC2/RD1

OC3/RD2

OC4/RD3
IC5/RD12

PIC32MX7

M-

M+

VCC

GND

SA IN

SB IN

D
C

 M
ot

or
 &

Ta

ch
om

et
er

JD11

JD12VCC

GND

Figure 5. Motor connection diagram

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 16 of 18

Appendix C: PMod HB5 Half H-Bridge Drive

- +
10VDC

JD
 P

m
od

C

on
ne

ct
or

D
C

 M
ot

or

Digilent PModHB5

PWM EN Pin

Figure 6. PmodHB5 instrumentation connections

Appendix D: Geared DC Motor

Geared DC Motor with
Tachometer

Figure 7. Digilent DC Motor

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 17 of 18

Appendix E: PmodCLP

R
S

EN
A

B
LER
/W

Figure 8. PmodCLP Character LCD pin identification

Appendix F: Period Measurement Resolution
Definition: The granularity of a sensor measurement is the smallest change it can detect in the
quantity that it is measuring. Resolution, which is the inverse of granularity, is related to the
precision with which the measurement is made.

Units: Hz/Count

Assume that Timer 3 count is recorded on each transition. Then for two frequencies, F1 and F2
the Timer 3 counts are computed by:

𝐹𝑇𝑀𝑅3 = 𝑃𝐵𝐶𝐿𝐾
𝑇3𝑃𝑆

= 107

256
 Eq. 2

𝑇3𝐶𝑂𝑈𝑁𝑇1 = FTMR3
F1

 Eq. 3

𝑇3𝐶𝑂𝑈𝑁𝑇2 = FTMR3
F2

 Eq. 4

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf
http://en.wikipedia.org/wiki/Accuracy_and_precision

Frequency Measurement Using Input Capture
with the Cerebot MX7cK™

 page 18 of 18

To compute the resolution in Hz per count, assume that the count difference is unity which
results in Eq. 5 or Eq. 6 which ever express the desired units.

|𝑇3𝐶𝑂𝑈𝑁𝑇1 − 𝑇3𝐶𝑂𝑈𝑁𝑇2| = 𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = (𝐹𝑇𝑀𝑅3) ∙ �� 1
F2
− 1

F1
�� 𝐶𝑂𝑈𝑁𝑇𝑆/Hz Eq. 5

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = � 1
FTMR3

� ∙ � 1
�� 1F1−

1
F2��

� = � 1
FTMR3

� ∙ � F1∙F2
|(F2−F1)|�𝐻𝑧/𝐶𝑂𝑈𝑁𝑇 Eq. 6

|𝐹2 − 𝐹1| = Resolution = � F1∙F2
FTMR3

�𝐻𝑧/𝐶𝑂𝑈𝑁𝑇 Eq. 7

If F1 approximately equals F2, at 1 Hz, the resolution is 0.0001024 Hz/ Count. At 200 Hz, the
resolution is 1.024 Hz/ count.

	Project 10: Frequency Measurement Using Input Capture
	Purpose
	Minimum Knowledge and Programming Skills
	Equipment List
	Software Resources
	References
	Analog to Digital Conversion
	Fundamentals of Frequency Measurement
	Timer Setup for PWM and Input Capture
	PIC32 Software for Timer 2 Setup for PWM and Timer Interrupt
	PIC32 Software Timer Setup for Input Capture
	Timer 3 Interrupt Setup
	Input Capture Initialization
	Input Capture ISR Example

	Project Tasks
	Project Specifications
	Project Testing

	Appendix A: Project 10 Parts Configuration
	Appendix B: Motor Controller Wiring Diagram
	Appendix C: PMod HB5 Half H-Bridge Drive
	Appendix D: Geared DC Motor
	Appendix E: PmodCLP
	Appendix F: Period Measurement Resolution

