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Purpose 
The purpose of this project is to use the PIC32 input capture to measure frequency. Using such 
a frequency measurement will allow us to determine the speed of a DC motor. This project uses 
a period measurement to determine frequency. Project 9 should be completed prior to 
completing Project 10. 

Minimum Knowledge and Programming Skills 
1. Knowledge of C or C++ programming 

2. Working knowledge of MPLAB ® X IDE  

3. Understanding of PWM principles 

4. Concepts of frequency measurements (bad link!)  

5. Use of logic analyzer (7 channels will be simultaneously monitored) 

Equipment List 
1. Digilent Cerebot MX7cK processor board with USB cable 

2. Microchip MPLAB ® X IDE 

3. Microchip MPLAB ® XC32 Compiler   

4. Digilent PmodCLP Parallel Character LCD 

5. Digilent H-Bridge driver PMod 

6. Digilent DC Motor  

7. 8 Channel Logic analyzer (Digilent Analog Discovery) 

Software Resources 

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
https://en.wikipedia.org/wiki/Pulse-width_modulation
http://www.pttimeeting.org/archivemeetings/2005papers/paper67.pdf
http://ece.utep.edu/courses/web3376/Logic%20Analyzer.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_90.zip
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,403,625&Prod=MT-MOTOR
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
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1. XC32 C/C++ Compiler Users Guide 

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler 

3. PIC32 Family Hardware Reference Manual Section 16 Output Compare  

4. Cerebot MX7cK Board Reference Manual 

5. MPLAB ® X Integrated Development Environment (IDE) 

References 
1. PIC32 Input Capture 

2. Voltage to Frequency Converter  

3. Using PWM to Generate Analog Output 

4. C Programming Reference 
 

Analog to Digital Conversion 
Project 9 investigated methods of using a microprocessor to generate a variable amplitude 
output. In Project 10, we will look at one method of using a microprocessor to measure a 
variable-valued input.  The PIC32 processor has 16 analog inputs channels for a 10-bit ADC. 
However, we will use the DC motor tachometer to measure the analog speed value. 
Considering that the motor speed is controlled by the average applied voltage, the tachometer 
represents a voltage to frequency converter. Various silicon manufacturers offer electronic 
devices that are used to generate a pulse waveform whose frequency is a function of the 
voltage applied to the sensor input. Using the frequency of a digital pulse wave to represent an 
analog signal has the advantages of higher signal to noise ratio and reduces sensitivity to circuit 
impedance. 

Project 9 implemented open loop speed control of a DC motor. This control approach depends 
upon the proportionality of the motor speed to the applied voltage. Project 10 is designed to test 
the linearity of open loop speed control by providing a tachometer to measure the rotor shaft 
speed. The hardware requirements for Project 9 are the same as for Project 10. Details 
concerning the hardware configuration for this project are provided in Appendix A through 
Appendix E. The DC motor used on the Digilent Cerebot MX7cK Project System pictured in 
Appendix D has two Hall Effect sensors that provide a pulse each time the DC motor shaft 
makes a revolution. The two sensors are physically oriented around the motor rotor shaft such 
that they generate two digital signals that oscillate at the same frequency but are out of phase 
by 90 degrees. The SA and SB PmodHB5 Hall Effect sensor outputs form a quadrature encoder 
that allows both the speed and direction of rotation to be measured. We are only concerned with 
measuring the motor speed in Project 10.  

http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://microchip.wikidot.com/mplab:_start
http://ww1.microchip.com/downloads/en/DeviceDoc/61122F.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00795a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf
http://www.w3schools.in/c-programming-language/intro/
http://ww1.microchip.com/downloads/en/DeviceDoc/61104E.pdf
http://en.wikipedia.org/wiki/Rotary_encoder
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The speed of the geared output shaft is reduced by the ratio of 53 to 1 to provide greater 
mechanical torque. The speed of the motor will be measured by determining the frequency of 
the digital pulse wave generated by the Hall Effect sensor. 

Fundamentals of Frequency Measurement 
As with the measurement of any data, we are concerned with three parameters: accuracy, 
resolution, and precision. The accuracy of a frequency measurement is dictated, to a large 
extent, by the accuracy of the reference crystal or oscillator.  For this project, we depend on the 
accuracy of the oscillator populated on the Cerebot MX7cK processor board. The measurement 
precision is a metric applied to the repeatability of a measurement. Resolution is the smallest 
interval between two measurements. Accuracy is the difference between the measured value 
and an absolute standard (the “truth”). Measurement precision and resolution are determined by 
the processing of the measured data. The subject of frequency measurement resolution is of 
great interest and is addressed in greater detail in the following paragraphs.   

There are two methods of estimating the frequency of the tachometer. The number of signal 
transitions (rising, falling, or both) in a fixed time interval can be counted, or the time interval 
between two consecutive signal transitions can be measured using a timer. Measuring 
frequency by counting transitions over short intervals is more accurate for signals when the 
frequency of the signal being measured is high relative to the observation interval. This results 
in many hundreds or even thousands of cycles being counted during the measurement interval, 
thus providing a high frequency measurement resolution.  

Measuring the period is generally more precise for relatively low frequency signals. The 
resolution is provided by the number of timer counts between input signal transitions. The 
measurement period now depends of the frequency of the input signal and, for very low 
frequency signals, may result in excessively long delays between measurement updates.  

There are methods to mitigate the effects of long measurement periods for low frequency 
signals. One method is to use frequency multiplication with a phased locked loop (PLL) circuit. 
Most modern microcontrollers and microprocessors use frequency multiplication so that the core 
speed of the processor is many times the processor crystal frequency. The PIC32 processor 
family uses a phase locked loop multiplier to set the core frequency by a parameter in the 
config_bits.h file. Another method for handling the measurement of signals with long periods is 
to use clocks that run at very low frequencies.  

For Project 10, you will measure the speed of the motor rotor shaft by computing the period 
between two successive pulses of the motor tachometer by capturing a timer count on each 
falling transition. In order to achieve precise measurements the period must be measured with 
high resolution. This requires that the timer be counting at a much higher rate than the period of 
the of the tachometer signal. The precision of the frequency estimate is preserved by inverting 
the period using floating point variables or fixed point math divide algorithms. 

http://www.tutelman.com/golf/measure/precision.php
http://www.tutelman.com/golf/measure/precision.php
http://www.spectracomcorp.com/Desktopmodules/Bring2Mind/DMX/Download.aspx?EntryId=446&PortalId=0
http://en.wikipedia.org/wiki/Phase-locked_loop
http://online.medphys.org/resource/1/mphya6/v35/i1/p81_s1?isAuthorized=no
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The challenge is to select the timer input clock rate that will provide adequate period accuracy 
across the range of possible tachometer frequencies. The maximum number of counts is 65535 
timer increments. Using a peripheral bus clock (PBCLK) frequency of 10 MHz and a timer pre-
scale value of 256, the minimum measurable frequency is 0.596 Hz but will require 1.68 
seconds to get a measurement update. The maximum measurable frequency, corresponding to 
one timer count, is 39 kHz, but the resolution degrades to 39 kHz. A signal frequency of 197.6 
Hz  will result in a 1 Hz resolution (Equation 1). 

Granularity is a relative term that relates to the coarseness of a measurement. Higher 
granularity means lower resolution1. From the derivation shown in Appendix F, resolution of the 
frequency measurement when using a timer to measure the signal period can be determined 
using the equation: 

∆𝐹 = T3PD 
𝑇𝑆𝐼𝐺𝑁𝐴𝐿

∙ FSIGNAL =  T3PD FSIGNAL2          Eq. 1 

where FSIGNAL = 1/TSIGNAL and T3PD = T3PRESCALE/PBCLK  

Eq. 1 shows that, for a fixed timer clock frequency, the granularity of the frequency 
measurement, ∆F, increases as the square of the input frequency and has dimension of Hz.  As 
Figure 1 illustrates, a higher input frequency will result in a measurement with higher granularity 
for a given measurement interval.  Better resolution (finer granularity) is achieved by increasing 
the clock frequency or reducing input frequency. 

Measuring a signal frequency by computing the inverse of the signal period will generate a new 
measurement update at the signal frequency. Provided that the input signal has a 50% duty 
cycle, we can get two frequency measurements per cycle of the input signal by determining the 
period when the input is high and the period when it is low. Measurement noise can be reduced 
by averaging multiple period measurements. 
 

The speed of the motor is proportional to the frequency of the signal generated by the motor 
tachometer. The motor that we are using has a reduction gear with a ratio of 53:1. Using a 10V 
motor supply, the maximum motor speed will be approximately 525 revolutions per second 
(RPS) or 594 RPM on the output of the gear head.  Due to motor power limitations and gear 
head friction, the minimum motor speed is approximately 79.5 RPS which is equivalent to 90 
RPM as measured on the gear-head output shaft. 

 

                                                           
1 Avoid using these terms! 

https://en.wikipedia.org/wiki/Granularity
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Figure 1. Plot of frequency measurement resolution for a fixed clock frequency. 

Timer Setup for PWM and Input Capture 
For this project, we will use two PIC32 timers: one for generating the PWM output that controls 
the motor speed (Timer 2), and one that will be used to capture the time when the tachometer 
signal transitions from low to high or high to low (Timer 3). The reason for using two timers is 
that the period register of the two timers are set to different values in order to achieve different 
design objectives. The period register of the timer used for generating the PWM signal is set to 
give a particular PWM cycle frequency.  The period register of the timer used for measuring the 
period of the tachometer signal is set to the maximum value to allow the period measurement of 
an input signal over a wider range of frequencies. The lower the frequency on the input signal, 
the more timer counts that will be measured.  The period measurement will be incorrect if the 
timer resets after reaching the terminal count more than once between input signal transitions. 
Hence, the period register for the timer that is used for timer capture will be set to its maximum 
value, 65536.  
 
The ReadCapture() function from the peripheral library uses a pointer to an array of unsigned 
integers (32 bits), even though the timer is only 16 bits. In order to correctly compute the 
number of timer increments in the event of timer rollover between two samples we must treat 
the values in the array as unsigned short int data types. For example, consider the case when 
the first captured timer value is 0xFE3E (65086 in decimal) and the second 0x0096 (150). The 
result of (0x0096 – 0xFE3E) is 0x0258 (600) – the true interval in timer increments. A more 
thorough discussion of time interval issues is provided in the section titled, “Handling Timer 
Rollover for Hardware Assisted Delays” in Project 2.  
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PIC32 Software for Timer 2 Setup for PWM and Timer 
Interrupt 
 

Timer 2 will serve two functions: it will be used to generate the PWM signal and it will generate 
an interrupt once each millisecond. The one millisecond interrupt will be used for hardware 
timing. Configure Timer 2 for operations as follows:   

1. Configure Timer 2 from 1ms period  
a. OpenTimer2(T2config_bits, PR2_value); where (PR2_value + 1) is the period 

register value computed for the PWM cycle frequency.  
i. T2config_bits = (T2_ON | T2_Ps_1_1 | T2SOURCE_INT) 
ii. PR2 = (10000-1) for PBCLK = 10MHz 

 
2. Configure Output Compare for 1ms PWM cycle period 

a. OpenOCx(OC_configure_bits, nOCxRS, nOCxR); where nOCxRS is the initial 
value written to the OCxRS register and nOCxR is the initial value written to the 
OCxR register. “x” designates the specific OC register being configured in the 
range of 1 through 5.   

i. OC_configure_bits (b1 | b2 | b3 | b4)   
1. b1 = OC_ON //Enables the Output compare processor resource 
2. b2 = OC_TIMER_MODE16 // Timer uses 16 bit mode 
3. b3 = OC_TIMER2_SRC  // Selects Timer 2 as input timer 
4. b4 = OC_PWM_FAULT_PIN_DISABLE // Don’t use fault pin 

ii. Output Compare Registers 
1. nOCxRS – This is a constant or a variable that specifies the initial 

PWM compare value 
2. nOCxR – This is a constant or a variable that specifies the next 

PWM compare value 
 
Refer to the Section 13 of the C32 Peripheral Library Guide for option details. 

b. Example: OpenOC3(OC_configure_bits, nOC3RS, nOC3R); 
 

3. Timer 2 interrupt using peripheral library macro functions 
a. mT2SetIntPriority( 2);  // Set Timer 2 interrupt group priority level 2 
b. mT2SetIntSubPriority( 1); // Set Timer 2 interrupt subgroup priority 1 
c. mT2IntEnable( 1);  // Enable T2 interrupts 
d. Alternatively, using the C32 Peripheral Library function: 

ConfigIntTimer2(T2_INT_ON | T2_INT_PRIOR_2 | T2_INT_SUB_PRIOR_1); 
 

4. Timer 2 ISR code 
void __ISR( _TIMER_2_VECTOR, ipl2) T2Interrupt(void); 
{ 

LATBINV = LEDA; // Toggle LED A – instrumentation 
mT2ClearIntFlag(); // Clear Timer 2 interrupt flag 
// INTClearFlag(INT_T2); // Alternate peripheral library function 

} 

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
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PIC32 Software Timer Setup for Input Capture 

Timer 3 Interrupt Setup  
Timer 3 will be used exclusively for a 16 bit input timer capture.   
 

1. Configure Timer 3 to use the PBCLK and a pre-scale value of 256. Set Timer 3 PR3 
register to 0xFFFF for maximum interval. 

a. OpenTimer3(T3_ON | T3_PS_1_256 | T3_SOURCE_INT, 0xFFFF);  
b. mT3SetIntPriority( 2);   // Set Timer 3 interrupt group priority 2 
c. mT3SetIntSubPriority( 2); // Set Timer 3 interrupt subgroup priority 2 
d. mT3IntEnable( 1);  // Enable Timer 3 interrupts 
e. Alternate to steps b through d using the C32 Peripheral Library function: 

ConfigIntTimer3(T3_INT_ON | T3_INT_PRIOR_2 | T3_INT_SUB_PRIOR_2); 
 

2. Timer 3 ISR 
void __ISR( _TIMER_3_VECTOR, ipl2) T3Interrupt(void) 
{ 

LATBINV = LEDC; // Toggle LEDC  - Timing instrumentation 
mT3ClearIntFlag(); // Clear Timer 3 interrupt flag –  
// INTClearFlag(INT_T3); // Alternate peripheral library function 

 } 
 

Input Capture Initialization 
1. Set motor Hall effect outputs SA (RD3) and SB (RD12 - IC5) as inputs. MTR_SA is set 

as an input but is not used for this application because RD3 is not a designated input 
capture pin. (Note: MTR_SA and MTR_SB must be defined appropriately.) 

a. PORTSetPinsDigitalIn(IOPORT_D, (MTR_SA | MTR_SB));    
2. Clear pending input capture interrupts  

a. mIC5ClearIntFlag();  
 

3. Use input capture channel 5 for the following options. An interrupt will be generated on 
each falling edge of the input signal.  
void OpenCapture5(c1 | c2 | c3 | c4 | c5 | c6 | c7); // Note the logical OR!!!2 

a. c1 = IC_ON     // Enable input capture 
b. c2 = IC_CAP_16BIT    // Capture a 16 bit timer count 
c. c3 = IC_IDLE_STOP    // Stop input capture during debug  
d. c4 = IC_FEDGE_FALL   // Initial capture on falling edge 
e. c5 = IC_TIMER3_SRC   //Use Timer 3 as time to capture 
f. c6 = IC_INT_1CAPTURE   // Generate interrupt on each capture 
g. c7 = IC_EVERY_ FALL_EDGE  // Capture time on each falling edge 

 
                                                           
2 The sample code on p. 176 of the Peripheral Library Guide incorrectly uses logical AND.  



Frequency Measurement  Using Input Capture  
with the Cerebot MX7cK™  
 

 page 9 of 18 

4. Configure the Input Capture interrupt as follows 
a. ConfigIntCapture5(ic1 | ic2 | ic3); 

i. ic1 = IC_INT_ON   // Enable input capture interrupt   
ii. ic2 = IC_INT_PRIOR_3 // Set priority for level 3  
iii. ic3 = IC_INT_SUB_PRIOR_0 // Set sub priority for level 0  

b. Example:  
ConfigIntCapture5(IC_INT_ON | IC_INT_PRIOR_3 | IC_INT_SUB_PRIOR_0); 

 

Input Capture ISR Example 
void __ISR( _INPUT_CAPTURE_5_VECTOR, ipl3) Capture5(void) 
{ 

static unsigned int con_buf[4]; // Declare an input capture buffer 
// Declare three time capture variables:  
static unsigned short int t_new; // Most recent captured time 
static unsigned short int t_old = 0; // Previous time capture 
static unsigned short int time_diff; // Time between captures 
 
LATVBINV = LEDD   //Toggle LEDD on each input capture interrupt 
ReadCapture5(con_buf);  // Read captures into buffer 
t_new = con_buf[0];   // Save time of event 
time_diff = t_new – t_old;  // Compute elapsed time in timer “ticks” 
t_old = t_new;    // Replace previous time capture with new 
// Compute motor speed in RPS (revolutions per second) and save as global variable3 
// Details left as an exercise for the Reader  
mIC5ClearIntFlag();  // Clears interrupt flag 
// INTClearFlag(INT_IC5); // Alternate peripheral library function 

} 

 

Project Tasks 
The objective for this project is to implement a motor speed tachometer by measuring the 
frequency of the motor shaft sensor.  
 

1. Develop code that generates the PWM signal 
a. Initialize the PWM duty cycle to 40% 
b. Toggle LEDA each Timer 2 interrupt 
c. Set LEDB at the start of a CN ISR and clear LEDB at the end of the CN ISR 
d. Toggle LEDC each Timer 3 interrupt  
e. Toggle LEDD each input capture interrupt 

 

                                                           
3 Compute the motor speed as a moving average of at least ten samples. 
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2. Write and verify the C code to complete the button control and LCD display design 
specified below. 

 

3. Connect the logic analyzer probes as follows to demonstrate that the PWM output and 
Timer 2 interrupts continue to function while the CN interrupt is being served. 

a. Channel 0: LEDA – Measures Timer 2 interrupt timing 
b. Channel 1:  LEDB – Measures the ISR duration that detects a button press 
c. Channel 2:  LEDC– Measures Timer 3 interrupt timing 
d. Channel 3: LEDD – Measures the Input capture timing 
e. Channel 4: PmodHB5_EN – PWM output signal 
f. Channel 5: PmodHB5_SA – Motor tachometer Phase A  
g. Channel 6: PmodHB5_SB – Motor tachometer Phase B 

 
4. Capture the logic analyzer screen for the four PWM duty cycle settings specified in Table 

I. (See item three under project testing.) 
 
 
 
Table I. Button controlled PWM duty cycle 

BTN2 BTN1 PWM 
OFF OFF 40% 
OFF ON 65% 
ON OFF 80% 
ON ON 95% 

 
 

Project Specifications 
 

1. Operating Requirements: 
a. Foreground operations: (operations implemented from ISR) 

i. Toggles LEDA in the Timer 2 ISR at the 500 Hz rate (LEDA is toggled at 
one half of the PWM cycle frequency) 

ii. Detect button uses the change-notice interrupt similar to the Project 5 
implementation.  

1. The CN interrupt is to use a 20 ms software delay for switch 
debounce 

2. LEDB is turned on for the duration of the CN ISR. 
3. Sets the PWM output as a function of the states of buttons BTN1 

and BTN2 as specified in Table I 
iii. Toggles LEDC for each Timer 3 interrupt (1.68 second period) (the 

maximum time before a Timer 3 roll-over) 
iv. Toggles LEDD each time the input capture ISR is serviced (the speed of 

the DC motor) 
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v. Writes the PWM percent duty cycle to line 1 of the LCD whenever the 
buttons change the %PWM (Hint: Generate a function the positions the 
LCD cursor to a fixed position. Then write a fixed length character string 
to update the element of the display.) 

b. Background operation: 
i. Updates the motor speed measurement (RPM) on line 2 of the LCD 

display at the rate of once each 100ms as determined by the software 
delay function, “DelayMs”, that can be preempted  

ii. Clear only line 2 of the LCD and display the measured revolutions per 
second as RPS = xxx.xx 

iii. The LCD updates must be protected from CN interrupts 
 

2. Software Organization: 
a. “main”  

i. Calls application initialization function that completes the following:  
1. Cerebot MX7ck board configured inputs for BTN1 and BTN2 
2. Cerebot MX7ck board configured outputs for PmodSTEP LEDA 

through LEDD 
3. Timer 2 to generate an interrupt each millisecond.  
4. The PWM output channel as follows 

a. Use output compare 3 (OC3) 
b. Uses Timer 2 for the time base for the output compare 
c. PWM cycle frequency of 1000 Hz 

5. Timer 3 to generate an interrupt every 1.68 seconds. (Prescale of 
256 and a period of 0xFFFF.) 

6. Input Capture (See Input Capture ISR Example) 
a. Use Input Capture 5 
b. Trigger on each falling edge of the input pin  IC5 (RD12) 

7. Use a 16 bit timer 
a. Use Timer 3 as time reference 

8. Initialize a CN interrupt for button status detection at priority 1 and 
the sub priority level 0. 

9. LCD initialization with a function added to position the LCD cursor 
at any position. (Refer to Project 6 for LCD programming) 

ii. Executes a while(1) loop (background operations) 
1. Updates the motor speed measurement (RPM) on line 2 of the 

LCD display at the rate of once each 100ms as determined by the 
software delay function, “DelayMs”, that can be preempted  

2. Clear only line 2 of the LCD and display the measured revolutions 
per second as RPS = xxx.xx 

3. The LCD updates must be protected from CN interrupts 
b. Button Detect ISR (refer to Project 5) 

i. Sets LEDB on entry and clears LEDB on exit 
ii. Remove button contact bounce with 20ms software delay  
iii. Reads button state 
iv. Decodes buttons and sets PWM in accordance with Table I 
v. Sets the motor PWM 
vi. Updates only line 1 of the LCD reporting the % PWM using the format: 

PWM = ##% 



Frequency Measurement  Using Input Capture  
with the Cerebot MX7cK™  
 

 page 12 of 18 

vii. Clears CN interrupt flag 
c. Timer2 ISR  

i. Toggles LEDA 
ii. Clears T2 interrupt flag 

d. Timer 3 ISR 
i. Toggle LEDC 
ii. Clear T3 interrupt flag 

e. Input capture ISR 
i. Clears input capture interrupt flag. 
ii. Toggles LEDD 
iii. Computes the time interval since the last input capture interrupt 
iv. Computes a moving average of motor speed – RPS (global variable)4 

Project Testing 
The DC motor control block diagram is shown in Appendix B, The Hall Effect device output 
labeled SB is connected to the IC5 / RD12 pin. Consequently, we will be configuring the 
PIC32 to use input capture channel 5. Refer to the OpenCapture topic in the C32 peripheral 
library for the setting of the input capture module.  

1. Connect the test equipment to the Cerebot MX7cK using a logic analyzer as follows: 
a. Connect the logic analyzer CH 0 through CH 3 probes to the test points for LEDA 

through LEDD on the PmodSTEP. 
 

b. Connect logic analyzer CH 4 probe to the test point for the PWM EN pin on the 
PmodHB5. 

 
c. Connect logic analyzer probes for CH 5 and 6  to the test points for the SA and 

SB pins on the PmodHB5 
.  

2. Run the Project 10 program to record the measurements indicated in Table II for the 
case when the PWM is set to 65%. Measure and record the motor supply voltage. 

 
Table II.  
Instrumentation TP Function Measurement – Hz 
PmodSTEP LEDA PWM cycle frequency (Timer2)  
PmodSTEP LEDB Length of CN interrupt  
PmodSTEP LEDC Input capture timer frequency (Timer3)  
PmodSTEP LEDD Input capture frequency  

PmodH5 EN PWM waveform   
PmodH5 SA Tachometer frequency   
PmodH5 SB Tachometer frequency   

 
3. Provide a screen capture of the seven signals instrumented to complete Table II. An 

example plot is shown in Figure 2. (Note: LEDC and LEDD were swapped below.) 

                                                           
4 Minimum of ten samples. 
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Figure 2. Screen capture of the seven monitored signals. 

4. Complete Table III and graph the frequency measured at the PmodHB5 SB pin versus 
the percent PWM duty cycle specified in Table I. A sample plot of this data is provided in 
Figure 3. 

Table III. Motor Tachometer frequency for button controlled PWM duty cycle 

BTN2 BTN1 PWM SB – Hz 
OFF OFF 40%  
OFF ON 65%  
ON OFF 80%  
ON ON 95%  
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Figure 3. Sample Plot of DC motor speed as a function of PWM duty cycle 
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Appendix A: Project 10 Parts Configuration 

2X16 
Character 

LCD
PMCLP 
PMod 

PC
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IDE

Cerebot PIC32 
MX7ck

Pmod 
JD7:12

PmodHB5
H Bridge 

Driver

PMP Data Bus - JB

PMP Ctrl Bus – JC
Pins 7, 8, and 9 

RB2:10 – JA
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Buttons
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PG.7

Test Point Header

PmodTPH
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Tachometer

PmodSTEP
LED and 

Test Points

 

Figure 4. Block diagram of the equipment used in Project 7. 

Appendix B: Motor Controller Wiring Diagram 
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Figure 5. Motor connection diagram 
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Appendix C: PMod HB5 Half H-Bridge Drive 

- +
10VDC

JD
 P

m
od

 
C
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ct
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D
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ot
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Digilent PModHB5

PWM EN Pin

 
Figure 6. PmodHB5 instrumentation connections 

 

Appendix D: Geared DC Motor 
 

Geared DC Motor with 
Tachometer  

Figure 7. Digilent DC Motor 
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Appendix E: PmodCLP 

R
S

EN
A

B
LER
/W

 
Figure 8.  PmodCLP Character LCD pin identification 

 

Appendix F: Period Measurement Resolution 
Definition: The granularity of a sensor measurement is the smallest change it can detect in the 
quantity that it is measuring. Resolution, which is the inverse of granularity, is related to the 
precision with which the measurement is made.  

Units: Hz/Count 

Assume that Timer 3 count is recorded on each transition. Then for two frequencies, F1 and F2 
the Timer 3 counts are computed by: 

𝐹𝑇𝑀𝑅3 = 𝑃𝐵𝐶𝐿𝐾
𝑇3𝑃𝑆

= 107

256
          Eq. 2 

𝑇3𝐶𝑂𝑈𝑁𝑇1 = FTMR3
F1

          Eq. 3 

𝑇3𝐶𝑂𝑈𝑁𝑇2 = FTMR3
F2

          Eq. 4 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf
http://en.wikipedia.org/wiki/Accuracy_and_precision
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To compute the resolution in Hz per count, assume that the count difference is unity which 
results in Eq. 5 or Eq. 6 which ever express the desired units. 

|𝑇3𝐶𝑂𝑈𝑁𝑇1 − 𝑇3𝐶𝑂𝑈𝑁𝑇2| =  𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = (𝐹𝑇𝑀𝑅3) ∙ �� 1
F2
− 1

F1
�� 𝐶𝑂𝑈𝑁𝑇𝑆/Hz   Eq. 5 

 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = � 1
FTMR3

� ∙ � 1
�� 1F1−

1
F2��

� = � 1
FTMR3

� ∙ � F1∙F2
|(F2−F1)|�𝐻𝑧/𝐶𝑂𝑈𝑁𝑇    Eq. 6 

 

|𝐹2 − 𝐹1| = Resolution =  � F1∙F2
FTMR3

�𝐻𝑧/𝐶𝑂𝑈𝑁𝑇      Eq. 7 

 

If F1 approximately equals F2, at 1 Hz, the resolution is 0.0001024 Hz/ Count.  At 200 Hz, the 
resolution is 1.024 Hz/ count. 
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