
SSooffttwwaarree TTiimmiinngg
wwiitthh tthhee CCeerreebboott MMXX77ccKK™™
Revision: 29 JAN 2019 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 1 of 18

Project 2: Software Time Delay

Table of Contents

Project 2: Software Time Delay .. 1

Table of Contents .. 1

Purpose ... 2

Minimum Knowledge and Programming Skills ... 2

Equipment List ... 2

Software Resources ... 2

Time Delay Concepts - How long does it take? ... 2

Pacing the computer ... 4

Pure Software Delays .. 4

Calibrating Time for Software Delays ... 5

Hardware-Assisted Delays .. 6

Project Tasks ... 7

Project Testing .. 9

Appendix A: PmodSTEP Parts Layout .. 11

Appendix B: Process for Determining the Software Delay Constant .. 12

Appendix C: MPLAB X Stopwatch ... 14

Appendix D: An Application of Time Delays ... 16

mailto:rwall@uidaho.edu

Software Timing
with the Cerebot MX7cK™

 page 2 of 18

Purpose

The purpose of this project is to investigate methods of creating software time delays to pace
processor operations. The timing methods that control when a process is to be executed can be
implemented using polling techniques that sample a free running clock or by executing code
that requires a fixed amount of time. This project also demonstrates the use of time delays for
signal conditioning.

Minimum Knowledge and Programming Skills
1. Knowledge of C or C++ programming

2. Working knowledge of MPLAB ® X IDE

3. Binary math, Boolean algebra, bit manipulation

4. IO pin control (see Project 1)

Equipment List
1. Cerebot 32MX7cK processor board with USB cable

2. PmodTPH1, PmodTPH2 or PmodSTEP

3. Logic analyzer, or oscilloscope (Suggestion - Digilent Analog Discovery)

Software Resources
1. XC32 C/C++ Compiler Users Guide

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler

3. PIC32 Family Reference Manual Section 14: Timers

4. Cerebot MX7cK Board Reference Manual

5. MPLAB ® X Integrated Development Environment (IDE)

6. C Programming Reference

Time Delay Concepts - How long does it take?

Usually the time required to execute software is a detriment to system performance. However,
there are instances when the program actually runs too fast and we are challenged with
developing ways of slowing it down. Each instruction that the processor executes requires a
finite amount of time. Sometimes we can use the inherent code execution time to our advantage
by using program loops to generate a delay. Consider the program shown in Listing 1 that adds
two integer variables and assigns the result to a third integer variable:

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
https://en.wikipedia.org/wiki/Binary_number
http://en.wikipedia.org/wiki/Boolean_algebra
http://www.cs.arizona.edu/classes/cs335/spring11/AssignmentsS11/bit-manipulation-tutorial.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,549&Prod=PMOD-TPH
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,515&Prod=PMOD-TPH2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,1160&Prod=PMOD-STEP
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61105E.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://microchip.wikidot.com/mplab:_start
http://www.w3schools.in/c-programming-language/intro/

Software Timing
with the Cerebot MX7cK™

 page 3 of 18

Listing 1.

/*
 * File: P1.c
 * Author: Richard Wall
 *
 * Created on July 5, 2013, 12:56 PM
 */

#include <plib.h>
#include "..\config_bits.h"

int main(void)
{
int a = 5, b = 10, c;

 c = a+b;
 return (EXIT_SUCCESS);
}

Each C source code statement is implemented by translating it into instructions that a given
processor understands and then acting on those instructions. The actual processor-level
instructions that implement this statement can be represented in assembly language. Unlike C,
which is considered a “high level” language that is independent of hardware, assembly
language is specific to the particular processor on which it runs. The assembly language
instructions are subsequently converted to a machine language that the processor actually
uses. Although it is beyond the scope of this project to teach assembly language programming,
we will consider a little bit of assembly code because it is instructive in terms of timing
considerations. You do not need to be especially concerned if some of the details seem a bit
mysterious. The C statement, c = a+b;, in the program shown in Listing 1 is implemented as a
sequence of four assembly language instructions as shown in Listing 2.

Listing 2. Assembly language code generated for the add statement.

9D000038 8FC30010 lw v1,16(s8) ; Load word Reg V1 indirect
9D00003C 8FC20014 lw v0,20(s8) ; Load word Reg V0 indirect
9D000040 00621021 addu v0,v1,v0 ; Unsigned Integer Add
9D000044 AFC20018 sw v0,24(s8) ; Store word indirect

The first two columns of Listing 2 are 32-bit numbers expressed in hexadecimal notation. The
first column shows the memory address where the machine code is stored. The second column
is the actual machine code that the processor uses to implement the instruction shown in third
and forth columns. The third column gives the type of assembly language instructions used and
the processor memory registers that are involved are given in the fourth column. Any text that
follows a semicolon is processed as a comment as illustrated by the fifth column.

To determine how many cycles each instruction takes we need to look at the assembly
language for the MIPS architecture that the PIC32MX uses. The conversion of C instructions to
assembly code can be different depending on the selection of compiler optimization options. If

Software Timing
with the Cerebot MX7cK™

 page 4 of 18

the PIC32MX is running the core clock at 80MHz, one CPU cycle is 12.5 ns (i.e., the period of
one clock cycle is the inverse of the clock frequency).

Due to the pipeline architecture used by the MIPS core, it is difficult to isolate a segment of code
and determine its execution time strictly based upon the number of instructions. By using the
Stopwatch capability of MPLAB ® X to time the four instructions in Listing 2, we find that 31
CPU cycles are required. (See Appendix C for instructions on how to use the MPLAB ® X
Stopwatch feature.) This equates to 387.5 ns when the core clock is running at 80MHz. Setting
aside the difficulties with determining time to execute from lines of assembly code, the sheer
number of instructions is a relative indicator. The execution time required to complete any
particular C instruction is determined by the complexity of the C statement, the assembly code
that the C instruction is translated into, and the speed that the processor is running.

It is sufficient to say that each C instruction can require multiple assembly language instructions
to implement and each assembly instruction requires time to execute. The bottom line is that
the execution of C code requires time and we can use this time to generate predictable time
delays. An alternate method to generate a time delay is to use one of the timer resources of the
processor. We will investigate both of these two methods of creating a delay function in this
project.

Pacing the computer

When the processor executes code faster than the application requires, microprocessor based
systems have time to spare. Say, for example, there is an application where an LED is to be
toggled between on and off at a one-second rate. The LATGINV instruction, used to toggle the
IO pin, only requires four processor clock cycles accounting for 50ns of the desired one second
period. Knowing that the microprocessor always wants to be executing the next line of code at a
rate of 80 million instructions per second, additional instructions must be executed to implement
a time delay operation. In most cases, the time delay function has no other purpose than to kill
time.

Two approaches for developing a delay function will be explored in this project: one that
requires no special hardware but instead relies strictly upon the execution time of a software
loop. We will refer to this approach as the “software” delay method. The other uses one of the
processor’s built-in timers to generate a delay by counting clock cycles. We call this approach a
“hardware-assisted” delay method. Delay functions have two controlling interrelated elements:
the resolution and the range. The resolution is defined by the smallest possible delay and the
range by the longest possible delay. To some extent these parameters are determined by the
method chosen to implement the delay.

Pure Software Delays
First, let us focus on the software delay method by considering a software loop to generate a
delay function. There are three ways to write a software loop: a “for”, a “while” loop, and a “do-
while” loop. An example of using a “for” loop is: for (i = 0; i < COUNTS_PER_MS; i++);. In this
program statement, the value of the constant “COUNTS_PER_MS” is chosen to result in a unit
delay (delay of one unit) to be one millisecond. Listing 3 shows how to generate a software
delay of specified time using a fixed number of “for” loop iterations. This “for” loop is then

Software Timing
with the Cerebot MX7cK™

 page 5 of 18

repeatedly executed for each desired millisecond of delay using a “while” loop. The speed at
which the processor executes code affects value of the constant COUNTS_PER_MS. The
larger the nominal value of the constant COUNTS_PER_MS, the higher the resolution of the
period hence the more accurately the delay period can be set. The lines of code that are
annotated with the comment “// SW Stop breakpoint” identify the lines of code where break
points are inserted to allow execution timing using the MPLAB X stopwatch tool. (See Appendix
C for information on using the stopwatch.)

Listing 3. Software delay function

// LEDA is defined in CerebotMX7cK.h

/* The following define statement should be declared in Project2.h
#define COUNTS_PER_MS 1000 // Initial guess
*/

void sw_msDelay (unsigned int mS)
{
int i;
 while(mS --) // SW Stop breakpoint
 {
 for (i = 0; i< COUNTS_PER_MS; i++) // 1 ms delay loop
 {
 // do nothing
 }
 LATBINV = LEDA; // Toggle LEDA each ms for instrumentation
 }
} // SW Stop breakpoint

Given that the “mS” variable that specifies the number of milliseconds to delay is an unsigned
integer, the range or longest possible delay is 4,294,967,295 ms or 49.71 days. The
disadvantage of the software delay loop is that the value assigned to “COUNTS_PER_MS”
depends upon the processor speed. If the processor speed changes, then the delay function is
no longer calibrated correctly.

Calibrating Time for Software Delays
When using the “sw_msDelay” function shown in Listing 3 above, the questions that must be
answered are “What value should be used for COUNTS_PER_MS and how accurate is the
delay?” Subsequently, you must address the issue as to how best to determine the value to be
used for the COUNTS_PER_MS constant. As previously suggested, it is difficult to simply
accumulate the instruction times hence an alternate method will be used.

We suggest that software code be added to allow the software operation to be observable. One
way to accomplish this is by toggling an IO pin on the microprocessor. This requires that
external instrumentation be connected to the pin of the board connected to that IO port for the
bit being toggled. Suitable instrumentation for this test includes frequency counters,
oscilloscopes, and logic analyzers. Now one must consider the appropriate place to insert the
code to set the IO pin high or low realizing that inserting of such code may affect the accuracy of
the delay function. It is advisable to place the instrumentation code where it will be executed the
minimum number of times. It should be noted that the LATxINV instruction is used to toggle

Software Timing
with the Cerebot MX7cK™

 page 6 of 18

specific bits in the LAT register without modifying the other LAT register bits. This is an
important consideration when the IO pins for a specific port are used to control independent
outputs and different times. A detailed process for determining the value of
COUNTS_PER_DELAY is presented in Appendix B.

An effective alternative for measuring delay time is to use the MPLAB ® X Stopwatch tool
described in Appendix C.

Hardware-Assisted Delays
The hardware-assisted delay approach to generating a delay function makes use of one of the
processor hardware timers. For timer-based delays, the delay amount is often specified as an
integer number of CPU clock cycles, timer increments (“ticks”), or time units (e.g., milliseconds).
The Cerebot MX7cK board uses an 8MHz crystal. That in combination with programmable
PIC32 multipliers and dividers results in the PIC32MX795F512 processor capable of operating
at the maximum core frequency of 80MHz. In the config_bits.h file, the statement #pragma
config FPLLIDIV=DIV_2 first divides the frequency of the 8 MHz oscillator by 2. The statement
#pragma config FPLLMUL= MUL_20 then multiples the output of the input divider by 20
resulting in 80MHz. Finally the statement #pragma config FPLLODIV = 1 divides the 80MHz by
1 resulting in the core frequency of 80MHz. Since the power that a processor consumes is
related to the processor speed, the combinations of multiplier and dividers allow the developer
to set the core frequency that best suits the timing and power requirements of a particular
application. Refer to the Section 6 of the PIC32MX5XX/6XX/7XX technical reference for
information concerning configuration options for the core oscillator.

The PIC32MX processor family has several internal timers. For this project, we will use the core
timer to generate delays of arbitrary periods of time. The core timer ticks once for every two
times the system clock does. Therefore, the number of core oscillator counts per millisecond
equals one half the system clock frequency divided by 1000. The first three #define statements
in Listing 4 establish the number of core oscillator cycles in a millisecond. The “while” loop in the
“hw_msDelay” function shown in Listing 4 implements the total millisecond delay operation.
(Note: #define statements that are already declared in CerebotMX7cK.h should not be
repeated.)

Listing 4. Hardware-assisted delay function

/* The following define statements are declared in CerebotMX7cK.h
#define GetSystemClock() (80000000ul) // Hz
#define GetInstructionClock() (GetSystemClock()/2)
#define CORE_MS_TICK_RATE (GetInstructionClock()/1000)
#define LEDA BIT_2 // IOPORT B
*/

void hw_msDelay(unsigned int mS)
{
unsigned int tWait, tStart;
 tStart=ReadCoreTimer(); // Read core timer count - SW Start breakpoint
 tWait= (CORE_MS_TICK_RATE * mS); // Set time to wait
 while((ReadCoreTimer() - tStart) < tWait); // Wait for the time to pass
 LATBINV = LEDA; // Toggle LED at end of delay period

http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf

Software Timing
with the Cerebot MX7cK™

 page 7 of 18

} // SW Stop breakpoint

In Listing 4, the start time is immediately taken directly from the core timer using the
ReadCoreTimer() function. The variable “mS” passed to hw_msDelay() is the total number of
milliseconds to wait. The variable, tWait, is assigned to the number of ticks per millisecond
multiplied by the number of milliseconds to wait, mS. The current core timer value is
continuously read until the core timer has advanced beyond the value computed for tWait.
Repeatedly reading the core timer value is referred to as “polling” the core timer.

The delay period resolution of the hardware-assisted delay method is established by the core
oscillator frequency. The range of delay is limited by the largest value that an unsigned integer
data type used for the variable, tWait, can represent. For an 80MHz system frequency, this
results in (232 / CORE_MS_TICK_RATE) milliseconds = (232 /40,000) ms that equals 107,374
ms or 1.79 minutes.

Project Tasks
We will be referencing the instrumentation test points provided on the PmodSTEP module
(Appendix A) for this project. Specifically, we will use the test points associated with LEDA and
LEDB as identified on the parts layout shown in Appendix A. You are to write a single program
with the two methods of time delay. The program is compiled so that only one of the two time
delay methods is used at a time. For the program using the code in Listing 3, you must
determine an appropriate value for the COUNTS_PER_MS constant that is defined in
Project2.h. Hint: try starting at 5000. The Project2.h program will look like Listing 5 and
Project2.c like Listing 6. No other bits should be altered when toggling pins RB2 and RB3 for
timing purposes. Determine the relative accuracy for delays in different duration of the delay
over the range of 1ms to 1000ms.

Listing 5.

/********************** Project 2 *********************************
 *
 * File: Project2.h
 * Author: Richard Wall
 * Date: May 22, 2013
 *
*/

/* Software timer definition */
#define COUNTS_PER_MS 5000 /* Exact value is to be determined */

/* Function Prototypes */
void system_init (void); /* hardware initialization */
void sw_msDelay (unsigned int mS); /* Software only delay */
void hw_msDelay(unsigned int mS); /* Hardware-assisted delay */

Software Timing
with the Cerebot MX7cK™

 page 8 of 18

Listing 6.

/******************************** Project 2 ****************************
 *
 * File: Project2.c
 * Author name: Richard Wall
 * Rev. Date: May 22, 2013
 *
 * Project Description: The purpose of this project is to investigate
 * the characteristics and limitations of two types of polling delay.
 *
 **/

#include <plib.h>
#include "CerebotMX7cK.h"
#include "Project2.h"

int main()
{
int mS = 1; /* Set total delay time – change as needed */
 system_init (); /* Setup system Hardware. */
 while(1)
 {
 LATBINV = LEDB; /* Toggle LEDB each delay period */
/* Run with only one of the two following statements uncommented */
 sw_msDelay (mS); /* Software only delay */
// hw_msDelay(mS); /* Hardware-assisted delay */

 }
 return 0; /* Returning a value is expected but this statement
 * should never execute */
}

/* system_init FUNCTION DESCRIPTION **************************************
* SYNTAX: void system_init (void);
* KEYWORDS: initialization system hardware
* DESCRIPTION: Sets up the configuration for Port B to control LEDA
* - LEDH.
* RETURN VALUE: none
* END DESCRIPTION ***/
void system_init(void)
{
// Setup processor board
 Cerebot_mx7cK_setup();
 PORTSetPinsDigitalOut(IOPORT_B, SM_LEDS);/* Set PmodSTEP LEDs outputs */
 LATBCLR = SM_LEDS; /* Turn off LEDA through LEDH */
}

Software Timing
with the Cerebot MX7cK™

 page 9 of 18

/* sw_msDelay (mS) Function Description **********************************
* SYNTAX: void sw_ms_delay(unsigned int mS);
* DESCRIPTION: This is a millisecond delay function that will repeat
* a specified number of times. The constant "COUNTS_PER_MS"
* must be calibrated for the system frequency.
* KEYWORDS: delay, ms, milliseconds, software delay
* PARAMETER1: mS - the total number of milliseconds to delay
* RETURN VALUE: None:
* Notes: The basic loop counter "COUNTS_PER_MS " is dependent on
* the CPU frequency. LEDA will toggle at 500 Hz.
*END DESCRIPTION ***/
void sw_msDelay (unsigned int mS)
{

/* Use code from Listing 3 */
}

/*hw_msDelay Function Description **
* SYNTAX: void hw_msDelay(unsigned int mS);
* DESCRIPTION: This is a millisecond delay function uses the core time
* to set the base millisecond delay period. Delay periods
* of zero are permitted. LEDA is toggled each millisecond.
* KEYWORDS: delay, ms, milliseconds, software delay, core timer
* PARAMETER1: mS - the total number of milliseconds to delay
* RETURN VALUE: None:
* END DESCRIPTION ***/

void hw_msDelay(unsigned int mS)
{

/* Use code from Listing 4 */
}
// End of Project2.c

Project Testing
Use the LATBINV = LEDA; and LATBINV = LEDB; instructions to toggle the LEDs for to
instrument the two different delay programs. Connecting an oscilloscope or logic analyzer to the
test point for LEDB (RB3) will allow you to measure the total delay being called for from the
main function. Connecting the oscilloscope / logic analyzer probe to the test point for LEDA
(RB2) will measure the millisecond for loop delay but only for the sw_msDelay function.
(Remember to connect the oscilloscope or logic analyzer ground to the PmodSTEP ground pin.
See Appendix A for the pin locations.)

Figure 1 is an example of the instrumentation to determine the timing for a 20 ms delay. The
LEDA trace toggles each 1ms resulting in a frequency of 500Hz. The LEDB trace toggles each
20ms resulting in a frequency of 25Hz.

Software Timing
with the Cerebot MX7cK™

 page 10 of 18

Figure 1. Screen capture for 20 ms delay

Complete the data entries for Table 1 using the signal provided by instruments connected to the
test point for LEDB.

Table 1. Delay Performance Chart

Design Total
Delay – ms

Software Delay-

Measured - ms

Hardware Delay-

Measured – ms

 LED B LEDB

1

10

100

1000

Software Timing
with the Cerebot MX7cK™

 page 11 of 18

Appendix A: PmodSTEP Parts Layout

LE
D

A
LE

D
B

G
N

D

C
er

eb
ot

JA

LE
D

C
LE

D
D

S
M

1
/ L

E
D

E
S

M
2

/ L
E

D
F

S
M

3
/ L

E
D

G
S

M
4

/ L
E

D
H

B
ipolar

S
tepper M

otor

Figure 2. PmodSTEP Stepper Motor Driver Module parts layout

Table 2 LED – Pmod Port JA Pin and PIC32MX7 IO Port B Assignments

LED JA Pin # PIC32MX7 Port B Pin #
LED A 1 RB2
LED B 2 RB3
LED C 3 RB4
LED D 4 RB6
LED E / SM1 7 RB7
LED F / SM2 8 RB8
LED G / SM3 9 RB9
LED H / SM4 10 RB10

Software Timing
with the Cerebot MX7cK™

 page 12 of 18

Appendix B: Process for Determining the Software Delay
Constant

Assume that we want to have the for loop generate a one millisecond delay. The time to
execute a software delay loop is proportional to the number of times the loop must be executed
as expressed in Eq. 1.

TDELAY = COUNTS_PER_MS * TEXECUTION_TIME_SINGLE_LOOP Eq. 1

Given that the single loop execution time is constant then the relationship expressed in Eq. 2 is
also true:

TDELAY_1 / TDELAY_2 = COUNTS_PER_MS_1 / COUNTS_PER_MS_2 Eq. 2

TDELAY_1: Actual delay time measure by monitoring the test point for
 LEDA

T DELAY_2: The desired loop delay

COUNTS_PER_MS_1: Initial or previously computed number of for loop iterations to

generate a one millisecond delay.

COUNTS_PER_MS_2: Updated computed value of COUNTS_PER_MS

Suppose that using a particular value for COUNTS_PER_MS_1 in our software delay function
results in a delay (TDELAY_1) that is not equal to our desired 1ms delay (TDELAY_2). Rearranging
Eq. 2 allows us to solve for an updated COUNTS_PER_MS needed to implement the desired
delay as shown in Eq. 3.

COUNTS_PER_MS_2 = (TDELAY_2 / TDELAY_1) * COUNTS_PER_MS _1 Eq. 3

We can start with any initial guess for COUNTS_PER_MS _1 provided it is in the numerical
range of an unsigned integer. After running the program using our initial guess we then take the
measurement to determine the actual delay, TDELAY_1. Using the ratio of the desired delay to the
actual delay and multiplying by the value we used for COUNTS_PER_MS_1 allows us to
compute the new value for COUNTS_PER_MS_2.

In theory the new value computed for COUNTS_PER_MS_2 will result in the desired delay.
However, the proportionality of Eq. 1 is only approximate and it may require a few iterations of
solving Eq. 3 to achieve an accurate delay. The solution has converged whenever the
measured delay matches the desired delay. The following procedure can be used to determine
the correct value of COUNTS_PER_MS to achieve a one millisecond loop delay.

Step 1: Generate Project1 using the code provided by Listing 3 through 6. Be sure to have the
common header files config_bits.h and CerebotMX7cK.h as well as CerebotMX7cK.c added to
the project. Uncomment the sw_msDelay(mS) statement in the main function and set the initial
value of mS to 1 so a one millisecond delay is implemented. Select an initial value for
COUNTS_PER_MS_1. (For a one ms delay, a good number to try first is 5000.) Modify

Software Timing
with the Cerebot MX7cK™

 page 13 of 18

Project2.h to set the initial value for COUNTS_PER_MS equal to the value of
COUNTS_PER_MS_1.

Step 2: Compile and execute the C program for Project 2 with no breakpoints set.

Step 3a: Measure the high or low interval of the square wave generated at the LEDA test point
using an oscilloscope or logic analyzer. (Remember to connect the oscilloscope common to the
project board ground pin.) Record this measured period for the value of TDELAY_2.

Step 3b: An alternate method uses a frequency meter. Measure the frequency of the square
wave observed with a frequency meter that is connected at the LEDA test point. (Remember to
connect the meter common to the project board ground pin.) Record the measured frequency as
FMEASURED. Compute the delay period from Eq. 4.

 TDELAY_2 = 1/(2 * FMEASURED) Eq. 4

Step 4. Setting TDELAY_1 equal to 1ms and using the TDELAY_2 found in Step 3a or Step 3b along
with the value COUNTS_PER_MS_1, solve for COUNTS_PER_MS_2 using Eq. 3.

Step 5: Modify Project2.h to set the value for COUNTS_PER_MS equal to
COUNTS_PER_MS_2. If the TDELAY_2 is not equal to 1ms, assign the value of
COUNTS_PER_MS_1 equal to the value of COUNTS_PER_MS_2 computed in Step 4 and
repeat Steps 2 through 5 again. Continue repeating Steps 2 through 5 until the desired delay is
achieved to the desired degree of accuracy possible given the resolution of COUNTS_PER_MS
is plus or minus one count.

Software Timing
with the Cerebot MX7cK™

 page 14 of 18

Appendix C: MPLAB X Stopwatch
Open the stopwatch window by selecting Window->Debugging->Stopwatch on the MPLAB ® X
task bar. Using the source code window, generate two break points, one on line 19 and the
other on line 20, as shown in Figure 3. Next select the properties icon on the top right of the
Stopwatch window. (This icon is a hammer and a wrench.)

Figure 3. MPLAB X IDE with two breakpoints and the Stopwatch window.

On the Stopwatch properties window, the two dropdown boxes on the right allow you to select
the line of code that the stopwatch will be started and the line of code where the stop watch will
be stopped. Figure 4 show the results of selecting line 19 to start the stopwatch and line 20 to
stop the stopwatch. After selecting the start and stop conditions, select the OK box. The
MPLAB screen will look like Figure 3 once more. Select the Continue control until the execution
stops at line 20. The stopwatch cycle count is displayed in the Stopwatch window as shown in
Figure 5.

Software Timing
with the Cerebot MX7cK™

 page 15 of 18

Figure 4. Setting the Stopwatch properties

Figure 5. MPLAB X screen after executing code to line 20

Software Timing
with the Cerebot MX7cK™

 page 16 of 18

Appendix D: An Application of Time Delays
Contact de-bouncing: Momentary contact push buttons are inexpensive and commonly used
mechanical switches that either makes connection or breaks connection between its two
terminals. Normally-open momentary contact push buttons make an electrical connection
between two terminals when pushed or operated. A spring returns the button to the normal state
and breaks the connection when released. The opposite action is true for normally-closed
momentary contact push buttons. The simple push button is more than adequate for many
slowly operating applications such as ringing a door bell or sounding a horn.

If a push button is connected to a microprocessor input pin, then we must consider how the
contacts are actually operating. When switch is pressed there is short period of time where
oscillation of opening and closing the contact occurs due to the spring-mass characteristics of
the mechanical contacts. This phenomenon is called contact bounce or switch bounce. The
duration of the bounce period is random and can range from microseconds to hundreds of
milliseconds. Signal conditioning circuits or computer firmware remove these unwanted signal
characteristics. Figure 6 shows the typical signal seen by the microprocessor after the internal
signal conditioning when the push button switch is connected as shown in Figure 7. Depending
on the speed that the IO pin is polled, it is possible that multiple events are detected instead of
the single push operation. A search of the literature soon discloses that there are a plethora of
digital and analog electronic circuits specifically designed to remove the multiple contact
closures when the switch is activated and when it is de-activated. Equally numerous are the
segments of VHDL and microprocessor code to provide the signal conditioning using firmware.
Fundamentally, the required signal conditioning is that of a low pass filter. This signal
conditioning suppresses the high frequencies generated by the contact bounce while retaining
the low frequency signal generated by the press and release operations.

Figure 6. Ideal voltage plot of an active high push button operation showing the results of
contact bounce

Buttons that make the connection between two terminals when pressed are called Push-ON
switches and buttons that breaks the connection between two terminals are called push-OFF.
Figure 7 through Figure 10 show the possible connections for the push-ON and push-OFF
switches to generate active high or active low signals. The push buttons on the Cerebot MX7cK
processor board are configured similar to the circuit shown in Figure 7.

Software Timing
with the Cerebot MX7cK™

 page 17 of 18

VDD

µP IO
PIN

Figure 7 Active high connection of a normally open
momentary push button switch

VDD

µP IO
PIN

Figure 8. Active high connection of a normally
closed momentary push button switch

VDD

µP IO
PIN

Figure 9. Active low connection of a normally open
momentary push button switch

VDD

µP IO
PIN

Figure 10. Active low connection of a normally
closed momentary push button switch

A computer program can behave differently depending upon the duration of the contact
bounce, the speed at which an IO pin is polled, and exactly when the IO pin is polled. Under
unfavorable conditions the input can behave as though multiple events occurred when only one
event is intended. One approach to avoid this problem is to poll the input pin multiple times over
an appropriate period of time that extends beyond the expected contact bounce period. The
logic value resulting from successive polling operations can be repeatedly compared until the IO
pin readings match. A flow diagram of computer code to implement this operation is shown in
Figure 11. While this approach has proven generally effective it is by no means guaranteed to
eliminate all of the effects of contact bounce on a computer program. More elaborate schemes
must be used if the mechanical switch is to be employed in critical applications where sperious
multiple contact closures cannot be tolerated.

Software Timing
with the Cerebot MX7cK™

 page 18 of 18

Read IO Pin
into x1

Delay # ms

Read IO Pin
into x2

x1 == x2? Set x1 = x2

IO Pin is
value x2

No

Yes

Figure 11. Program control flow diagram for using time a delay to mitigate contact bounce.

There are two problems that must be addressed in the simple solution to contact bounce
proposed in the flow diagram shown in Figure 11. The initial problem to be addressed is what to
specify as an appropriate delay period to filter out all but an acceptable number of multiple event
detections due to contact bounce. Longer time delays are better but if the delay is too long, the
event can be missed due to a short button press (lack of signal persistence). The second
problem is perceived response time. Ganssle states in his tutorial that 100 ms is within the
human response time. A more appropriate computer response is to report the event
immediately when the button state change is first detected but not report a button release until it
occurs after the appropriate delay time. Such a solution is beyond the scope of this project but
is addressed again in Project 5 when we discuss the use of interrupts.

[1] Jack Ganssle, “A Guide to Debouncing, or, How to Debounce a Contact in Two Easy
Pages”, http://www.ganssle.com/debouncing.htm

[2] http://www.mcuexamples.com/push-buttons-and-switch-debouncing-with-PIC.php

[3] Jack Ganssle, “My favorite software debouncers“, http://www.embedded.com/electronics-
blogs/break-points/4024981/My-favorite-software-debouncers

http://www.ganssle.com/debouncing.htm
http://www.mcuexamples.com/push-buttons-and-switch-debouncing-with-PIC.php
http://www.embedded.com/electronics-blogs/break-points/4024981/My-favorite-software-debouncers
http://www.embedded.com/electronics-blogs/break-points/4024981/My-favorite-software-debouncers

	Project 2: Software Time Delay
	Table of Contents

	Purpose
	Minimum Knowledge and Programming Skills
	Equipment List
	Software Resources
	Time Delay Concepts - How long does it take?
	Pacing the computer
	Pure Software Delays
	Calibrating Time for Software Delays
	Hardware-Assisted Delays

	Project Tasks
	Project Testing
	Appendix A: PmodSTEP Parts Layout
	Appendix B: Process for Determining the Software Delay Constant
	Appendix C: MPLAB X Stopwatch

