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Purpose 

The purpose of this project is to investigate the application of software based state machines to 

controlling the speed, direction of rotation, and operational mode of stepper motors. This project 

requires knowledge of concepts presented in Projects 1 and 2 to provide real-time open loop 

control. 

Minimum Knowledge and Programming Skills 

1. Knowledge of C or C++ programming 

2. Working knowledge of MPLAB IDE 

3. Understanding of Finite State Machines 

4. IO pin control (see Project 1) 

5. Time control of computer program execution (See Project 2) 

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
https://en.wikipedia.org/wiki/Finite-state_machine
http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf
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Equipment List 

1. Cerebot 32MX7cK processor board with USB cable 

2.  PmodSTEP 

3. Stepper Motor (5V – 12V, 25, unipolar or bi-polar) 

4. Logic analyzer, or oscilloscope (Suggestion - Digilent Analog Discovery) 

Software Resources 

1. XC32 C/C++ Compiler Users Guide 

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler 

3. Cerebot MX7cK Board Reference Manual 

4. PIC32 Family Reference Manual Section 14: Timers 

5. MPLAB ® X Integrated Development Environment (IDE)\ 

6. C Programming Reference 

References: 

1. Microchip AN907 – Stepper Motor Fundamentals. 

http://ww1.microchip.com/downloads/en/AppNotes/00907a.pdf 

2. Introduction to Stepper Motors: 

http://www.omega.com/auto/pdf/REF_IntroStepMotors.pdf 

3. “Control of Stepping Motors A Tutorial”, Douglas W. Jones, 

http://www.cs.uiowa.edu/~jones/step/index.html 

4. Stepper Motor Theory of Operation, National Instruments, 

http://zone.ni.com/devzone/cda/ph/p/id/248 

5. Stepping Motor Types, Douglas W. Jones,  

http://www.cs.uiowa.edu/~jones/step/types.html 

 

Introduction to Stepper Motors and Finite State Machines 

After a search of the internet, one will find that the stepper motor is one of the most often used 

examples of an application of a finite state machine (FSM). Applications that use stepper motors 

include robotics, disk drives, and office products such as laser printers and copiers. 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,1160&Prod=PMOD-STEP
http://www.mpja.com/Stepper-Motor-NEMA-17-12VDC-36-Deg/productinfo/4317%20MS/
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61105E.pdf
http://microchip.wikidot.com/mplab:_start
http://www.w3schools.in/c-programming-language/intro/
http://ww1.microchip.com/downloads/en/AppNotes/00907a.pdf
http://www.omega.com/auto/pdf/REF_IntroStepMotors.pdf
http://www.cs.uiowa.edu/~jones/step/index.html
http://zone.ni.com/devzone/cda/ph/p/id/248
http://www.cs.uiowa.edu/~jones/step/types.html
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Stepper motors, like the one shown in Fig. 1, are variable reluctance electric motors that are 

designed to control angular position of the rotor shaft in discrete steps. The stepper motor 

consists of two sets of field windings positioned around a permanent magnet rotor as illustrated 

in Fig. 2. The combinations of voltage applied to the four control terminals of the field windings 

control the magnitude and direction of the current through the windings as illustrated in Fig. 3. 

The current through the windings create an electromagnet. The motor shaft rotates to a position 

that minimizes the reluctance path between the field winding electromagnet north and south 

poles.    

 

Fig. 1. Photograph of typical stepper motor 

 

 

Fig. 2. Photograph field coils and rotor of a 

stepper motor 
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Fig. 3. Bipolar Stepper motor diagram 

Considering the combinations of voltages on the winding terminals as possible control states, 

there are only eight states that produce current in the field windings as shown in Table 1 below. 

In order to move the rotator shaft from one stable position to the physically adjacent stable 

position, the control voltages must switch to one of four out of the eight possible combinations of 

voltages. The action of moving from one stable position to an adjacent stable position is referred 

to as either a full-step or a half-step. Half-step increments are half the angular rotation of full-
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steps. Repeating a sequence of full or half step movements at a uniform rate will cause the 

rotator shaft to rotate at a constant speed in discrete steps.  

Table 1. Stepper motor control codes 

Step Control  Winding Voltage 

Step 

Name 

Hex Code “1a”  “1b” “2a” “2b” 

S0_5 0x0A H L H L 

S1 0x08 H L L L 

S1_5 0x09 H L L H 

S2 0x01 L L L H 

S2_5 0x05 L H L H 

S3 0x04 L H L L 

S3_5 0x06 L H H L 

S4 0x02 L L H L 

 

The stepper motors used in this project are designed to require 100 full steps for the rotor shaft 

to complete one full revolution or 3.6 degrees per step. 200 half-steps are required to make one 

revolution or 1.8 degrees per half-step. The first column in Table 1 is a label assigned to the 

state.  The second column is the hexadecimal code that will set the processor IO pins to control 

the voltages on the terminals of the windings. The last four columns in Table 1 represent the 

combinations of voltages on the field windings that produce stable rotator shaft positions. The 

letter “H” denotes a high voltage and the letter “L” denotes a low voltage.  As shown in Fig. 3, 

current flows through a motor coil when there is a voltage difference across the winding. The 

voltage combinations for step 3 in Table 1 represent the combination to produce the current flow 

shown in Fig. 3.  

Binary codes are assigned such that we replace the letter “H” with a binary 1 and the letter “L” 

with a binary 0.  The values shown in column 2 of Table 1 are the hexadecimal equivalent of the 

binary representation of the field winding voltages. The four winding designations shown in 

Table 1 are assigned to IO pins as shown in Fig. 5 found in Appendix A. The stepper motor will 

move to the nearest stable position generated by the voltages associated with hexadecimal 

codes shown in the second column. The stepper motor will be held in a fixed position until the 

voltages on the windings change.  

The PmodSTEP driver module was designed to use IO PORT B pins 7 through 10 that are 

assigned designations SM1 through SM4 to control the voltages on the four stepper motor field 

windings. (See Appendix A for PmodSTEP connection details.) The hexadecimal codes listed in 

Table 1 must be shifted left such that the bit representing winding “2b” appears on Port B pin 7, 

the bit representing winding “2a” appears on Port B pin 8, the bit representing winding “1b” 

appears on Port B pin 9, and the bit representing winding “1a” appears on Port B pin 10 
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If the motor is to rotate the in a clockwise (CW) direction using the full-step mode, the 

sequence of output codes that must be sent to the motor are represented by steps S1, S2, S3, 

S4, S1, …. A 100 step per revolution motor will require the sequence of the four output 

combinations, S1 through S4, to be repeated 25 times to cause the rotator shaft to make exactly 

one revolution. If operating in half-step mode, then the eight step sequence of S0_5, S1, S1_5, 

S2, S2_5, … , S4 must be repeated 25 times for the rotator shaft to make a complete revolution. 

Sequencing through the output code the Table 1 in one direction (up or down) causes the 

rotator shaft to rotate in one direction.  Reversing this sequence causes the rotator shaft to 

reverse direction. 

Programming Concepts 

In a C-based program, the ‘main’ function consists of an infinite software loop that 

repeatedly executes a sequence of tasks inside the while(1) loop. A set of tasks must be 

repeatedly completed in the prescribed order within the “while(1)” loop to correctly control the 

stepper motor operation. The actual steps required and the order in which they are executed are 

prescribed by the application requirements. One possible sequence of operations to control the 

stepper motor is shown in Listing 1. 

Listing 1. Five operations used to control the stepper motor. 

1. Sense the button status of the control by polling the inputs that are connected to the 
buttons 

2. Map the button status to specific direction of rotation and step mode 
3. Determine the new stepper motor control output 
4. Output code to the stepper motor 
5. Delay the correct amount of time using one of the software delay approaches developed 

in Project 2. 
 

In this project, we are implementing a simple form of real-time open loop control. The term “real-

time” implies that all tasks must be completed in a specified time. The processor completes the 

code for the first four of the five operations listed in Listing 1 as quickly as the processor can 

execute the code. The fourth operation causes the stepper motor to physically move. The fifth 

causes the processor to wait before repeating the first four steps again. Note that for the control 

implementation described in Listing 1 the buttons are sampled at the step rate. Hence, the 

slower the motor is moving the less frequently the buttons are polled. One may consider ways to 

modify the tasks listed in Listing 1 to make the control more responsive. 

The precision of the stepping speed depends on the accuracy of the software delay loop and 

the amount of time required for processing the steps 1 through 4. One of the weaknesses of 

using software delays in control loops is the variance in loop speed due to changing execution 

times for the other tasks in the infinite task processing loop. This is also true of the hardware 

assisted delay loops. 

http://en.wikipedia.org/wiki/Polling_(computer_science)
http://en.wikipedia.org/wiki/Open-loop_controller
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The time delay function using the hardware assisted approach employs polling of the core timer.  

Because the processor is always polling inputs and timers or just executing a “for” loop that 

does nothing else except to consume time, the processor has no time to do anything else. This 

limitation will be rectified by changes to our methods of detecting events in Project 5. 

There are three parameters that will be used to control the stepper motor: the step direction as 

either CW or CCW, the step mode as either FULL or HALF, and the step delay that determines 

the rotator shaft rotational speed. For this project, we will be using a fixed speed of 15 RPM.   

The next output code that is needed to move the motor to the next position depends on the 

present rotor position. So the present position must be remembered from step to step. The need 

to ‘remember’ the step code that set the present rotator shaft position implies memory and the 

concept of a “state”. Hence a state machine will be used to determine the code to move rotator 

shaft to the next position. The output code, corresponding to the next state, depends upon the 

present state and the button inputs. The frequency of transitions is controlled by the delay 

function, similar to a clock period in a hardware based FSM. Additional information regarding 

software implementation of finite state machines is provided in Appendix B. 

The stepper motor driver module, PmodSTEP, shown in Appendix A has eight test points that 

are connected to the eight LEDs labeled LEDA through LEDH. The physical location of the test 

points is shown in Fig. 4. The wiring diagram provided by Fig. 5 shows that the pins that control 

LEDE through LEDH are also connected to a driver IC that amplifies the voltage and current 

switching capability needed to drive the stepper motor. The CerebotMX7cK.h header file defines 

the pin constants for LEDA through LEDH and also SM1 through SM4 as shown in Table 2 of 

Appendix A. These assignments assume that the PmodSTEP is connected to the Cerebot 

MX7cK Pmod jack JA.   

Instrumentation for monitoring the period between steps (ms/step) is provided by toggling LEDB 

on the PmodSTEP module each time a new step is generated. This bit can be toggled using the 

LATBINV instruction.  However, care must be taken when changing the PORT B outputs using 

an assignment to LATB to change the stepper motor shaft position. You cannot simply write the 

stepper motor control code to Port B using the instruction, “PORTB = code;” Doing so will also 

clear and out PORT B bits used for instrumentation.   

Since LEDA, LEDB and SM1 through SM4 outputs all share the same IO port, the bit state for 

LEDA and LEDB must be preserved when setting SM1 through SM4. This requires a read–

modify-write sequence in software. The bit set and bit clear operations should not be used 

because the two operations result in two different outputs being generated instead of just one.  

One possible method for implementing a read-modify-write sequence of code that was 

presented in Appendix A of Project 1. 

Project Design 
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You will write a program to control the direction and step-mode of a stepper motor at the fixed 

speed of 15 RPM as per the rules shown in Table 2. Your program should contain the seven 

software functions whose functionality is described in Listing 2.  Functions numbered 3 through 

7 will be continuously repeated, in order, within a while(1) software control loop. Note: Having 

completed Projects 1 and 2, you have already written software that partially implements all the 

functions in this list except function 5. The state diagram shown in Appendix B is to assist you in 

developing the stepper motor control function that implements the FSM. 

Table 2. Stepper motor control table 

Inputs Control Modes 

BTN2 BTN1 DIRECTION STEP MODE 

Off Off CW FS 

Off On CW HS 

On Off CCW HS 

On On CCW FS 

 

Listing 2. Task list for Project 3. Create one function for each task. 

1. “main” – the task control function responsible for calling the support functions listed 
below 

2. “system_init” – initializes all needed resources 
3. “read_buttons” – reads the status of BTN1 and BTN2  
4. “decode_buttons” – determines the values of stepper_direction, stepper_mode, and 

stepper_delay using the rules specified in Table 2 
5. “stepper_state_machine” – determines the new output code for the stepper motor 
6. “output_to_stepper_motor” – sends the four bit code to the stepper motor IO pins 
7. Implement a ms software delay that toggles LEDA each ms 
8. “sw_delay” – delays the number of milliseconds to generate a 15 RPM rotational 

speed and toggles LEDB each time a step is taken 
 

Project Testing 

The speed specifications are given in RPM must be to a delay with units of milliseconds per 

step. The following equation (Eq. 1) provides the needed conversion formula for a speed that is 

specified as X RPM. The factor, “MODE” in Eq. 1 is either 1 for full-step mode or 2 for half-step 

mode.  

TDELAY (ms/step) =  60000 ms/min / (X rev/min * 100 steps/rev * MODE)    Eq. 1 

The speed is specified as a constant 15 RPM for this project but the mode parameter is set 

according to the conditions provided in Table 2. Hence TDELAY will need to be adjusted to keep 

the motor speed constant. 
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For testing the direction control, one simply needs to observe the shaft of the stepper motor to 

verify that the direction changes when BTN2 is pressed. Use Table 3 of the project report to 

record your results.  

Table 3. Stepper motor delay per step verification table. 

Inputs Control Modes 

BTN2 BTN1 STEP MODE STEP DELAY 

Calculated 

STEP DELAY 

Measured 

Off Off FS 40ms  

Off On HS 20ms  

On Off HS 20ms  

On On FS 40ms  

 



FFiinniittee  SSttaattee  MMaacchhiinneess 
with the Cerebot MX7cK™  
 

 page 9 of 13 

Appendix A: PmodSTEP 
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Fig. 4.  PmodSTEP parts layout 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,1160&Prod=PMOD-STEP
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Fig. 5. PmodSTEP wiring diagram 

 

Table 2. LED – Pmod Port JA Pin and PIC32MX7 IO Port B Assignments 

LED  JA Pin # PIC32MX7 Port B Pin # 

LED A 1 RB2 

LED B 2 RB3 

LED C 3 RB4 

LED D 4 RB6 

LED E / SM1 7 RB7 (winding 2b) 

LED F / SM2 8 RB8 (winding 2a) 

LED G / SM3 9 RB9 (winding 1b) 

LED H / SM4 10 RB10 (winding 1a) 

 

Appendix B State Transition Diagram Model for Stepper 

Motor Control 

The state transition diagram shown in Fig. 6 graphically represents the states and transition 

conditions for the stepper motor control. States represented by S1 through S4 are “full-step 

states”. States represented by S0_5 through S3_5 are “half-step” states. Each state outputs a 

unique combination of four bits to the stepper motor as specified by Table 1.  
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The transitions that are strictly between full-step states and strictly between half-step states 

cause the stepper motor to rotate one full step.  For example, a transition from state S1 to S2 

causes the motor to rotate a full step. Likewise a transition between S1_5 and S0_5 also causes 

the motor to move a full step rotation. A transition between half-step and full-step states cause a 

half-step angular rotation. Such is the case for a transition from state S3_5 to S3.  
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Fig. 6. FSM diagram for stepper motor step and half-step control.  Each state is assigned an on-

entry output defined by Table 1 

A transition is generated each time the FSM function is called.  Each transition is identified by 

two parameters inside square brackets that are use to determine the step direction and mode. 

Only transitions shown on the state diagram will result in the stepper motor rotating in a 

predictable manner. Each state has four possible transitions to a new state.   The transition path 

to the new state is controlled by the clockwise (CW) and counter clockwise (CCW) direction 

controls as well as the full (F) or half (H) step mode. Whenever a new state is entered, it 

generates an output code, shown in Table 1. 
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To illustrate how state diagrams can be used to assist in the code development, consider the 

state diagram described by Fig. 7 that models using a momentary contact push button to 

implement a push-on / push off switch.  There are two possible output conditions: the switch is 

either closed (1) or open (0).  The condition of the momentary contact push button input is either 

pressed (1) or not pressed (0). This design requires four states labeled SA through SD. The 

initial state of the switch is identified by the transition from state “I”. Each state identified by a 

circle has a name and an output condition shows as a value below the state name. For 

example, the initial state, SA, has an output condition 0. “B” represents the stable button 

condition (all button contact bounce has been eliminated.) The state diagram shows that the 

switch output changes whenever the button makes a transition from the not pressed to the 

pressed condition. 
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Fig. 7. Push-on / push-off button state diagram 

Listing 1 is the C code that implements the state diagram shown above using the “switch-case” 

program control structure. Line 13 defines the states using a enumeration declaration. The state 

variable, pb_state, and the switch output variable, sw, are both declares as static variables that 

retain the previously assigned value between successive calls to the pb_sm function. The 

variable, pb_state, provides the necessary state memory.  The switch output variable, sw, is 

declared static for more efficient program execution by eliminating the need to set the variable 

each time the function is called. 

The cases used in the switch-case control structure shown in Listing 1 have a one to one 

correlation with the states defined in Fig. 7. Each time the function is called, a transition will be 

taken to a next state.  The next state transition is either to a different state or back to the current 

state. The conditional if statements in lines 19, 26, 32, and 40 control the transition to a different 

state. If no transitions conditions are met, the state remains unchanged.  This represents the 

transition to the same state for the next state condition. 
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Listing 1. C code for implementation of the push-on / push-off button design. 

1 /* pb_sm Function Description ********************************************** 

2  * KEYWORDS:        push button, FSM, state machine 

3  * DESCRIPTION:     Implements a push-on / push-off switch action using a 

4  *                  simple momentary bounceless push button. 

5  * PARAMETER1:      int btn - button condition: 1 = pressed, 0 = relaxed 

6  * RETURN VALUE:    switch on/off output: 0 = open, 1 = closed. 

7  * NOTES:           This state implementation generates output on state exit 

8  *                  transitions. 

9  * 

10  * END DESCRIPTION *********************************************************/ 

11 int pb_sm(int btn) 

12 { 

13 enum {SA=0, SB, SC, SD};    /* Declaration of states */ 

14 static int pb_state = SA;   /* Push button state variable initialized to SA */ 

15 int sw = 0;                 /* Switch output initialized to open */ 

16     switch(pb_state) 

17 { 

18 case SA: 

19 if(btn)              /*Is button pressed? */ 

20 { 

21 pb_state = SB;  /* Transition to next state */ 

22 sw = 1;         /* Output change to closed (1) on state exit */ 

23 } 

24 break; 

25 case SB: 

26 if(!btn)            /*Is button not pressed? */ 

27 { 

28 pb_state = SC;  /* Transition to next state */ 

29 } 

30 break; 

31 case SC: 

32 if(btn)              /*Is button pressed? */ 

34 { 

35 pb_state = SD;  /* Transition to next state */ 

36 sw = 0;         /* Output change to open (0) on state exit */ 

37 } 

38 break; 

39 case SD: 

40 if(!btn)            /*Is button not pressed? */ 

41 { 

42 pb_state = SA;  /* Transition to next state */ 

43 } 

44 break; 

45 } 

46 return sw;                 /* Return switch output */ 

47 } /* End of pb_sm */ 

 

 

 


