
HHaannddsshhaakkiinngg aanndd LLCCDD CCoonnttrrooll
wwiitthh tthhee CCeerreebboott MMXX77ccKK™™
Revision: 10May2019 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 1 of 23

Project 6: Handshaking and LCD Control

Project 6: Handshaking and LCD Control ... 1

Purpose ... 2

Minimum Knowledge and Programming Skills ... 2

Equipment List ... 2

Software Resources ... 2

Programming Concepts ... 2

Handshaking – What and Why ... 2

LCD Hardware Interface .. 5

LCD Software Interface ... 7

Bit-Banging LCD Interface ... 13

Parallel Master Port LCD Interface .. 14

Project Tasks ... 17

Project Testing .. 18

Appendix A: Project 6 Parts Configuration ... 20

Appendix B: PmodCLP ... 21

Appendix C: LCD Custom Characters .. 22

mailto:rwall@uidaho.edu

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 2 of 23

Purpose
The purpose of this project is to investigate concepts involving parallel communications

and handshaking. You will experiment with mechanisms required to pass information between
unsynchronized systems using hardware and software techniques. You will build a project that
consists of multiple C files. We will also look into using variables in software macros.

Minimum Knowledge and Programming Skills
1. Knowledge of C or C++ programming

2. Working knowledge of MPLAB IDE

3. ASCII character encoding

4. Use of logic analyzer or oscilloscope

Equipment List
1. Cerebot 32MX7cK processor board with USB cable

2. Microchip MPLAB X IDE

3. PmodTPH1 6 pin test point header

4. PmodTPH2 12 pin test point header

5. Oscilloscope / Logic analyzer

Software Resources
1. XC32 C/C++ Compiler Users Guide

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler

3. Cerebot MX7cK Board Reference Manual

4. PIC32 Family Reference Manual Section 21: UART

5. MPLAB ® X Integrated Development Environment

6. C Programming Reference

Programming Concepts

Handshaking – What and Why
Handshaking refers to the mechanism to facilitate the transfer of data between two systems that
may be operating at different clock frequencies. In simple terms, it involves a set of messages

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://en.wikipedia.org/wiki/ASCII
http://www.ece.utep.edu/courses/web3376/Logic_Analyzer.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_90.zip
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,549&Prod=PMOD-TPH
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,515&Prod=PMOD-TPH2
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY
http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61107F.pdf
http://microchip.wikidot.com/mplab:_start
http://www.w3schools.in/c-programming-language/intro/
http://en.wikipedia.org/wiki/Handshaking
http://en.wikipedia.org/wiki/Handshaking

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 3 of 23

or signals exchanged between two devices that control when data is transferred. The sender is
the device that is the source of the information and the receiver is the device intended to be the
destination of the information. For effective exchange of information, the sender needs to know
if the receiver is in a condition where it is able to receive the information and when the receiver
has successfully received the information. The receiver needs to know when the information is
ready to be sent and when the sender determines that the receiver has acquired the
information.

The exact implementation of the handshaking process comes in many forms but may be
classified as either explicit or implicit. Explicit handshaking uses dedicated hardware control
signals to indicate the impending action by the sender and readiness of the receiving device as
shown in Figure 1. Each of the two handshaking signals has two possible states. The basic
concepts are that the receiving device must indicate when it is ready to receive data and when it
is done. The sending device must tell the receiving device when new data is ready and the data
is no longer available.

Sender Receiver

Data

RxRdy

TxReq

Figure 1. Interconnection for 4-phase handshaking

The timing diagram shown in Figure 2 illustrates the sequence of events for the sender to
transfer data to the receiver using a four-phase handshaking protocol. The shaded area on the
data signal indicates intervals when the data is permitted change from a high to low or low to
high. At time “A” the receiver asserts the RxRdy signal high to indicate to the sender that it is
ready to accept data. When the sender has information to send to the receiver, it first presents
the data signals at time B and then asserts the TxReq signal high at time C to indicate the data
is now available to be read. The time interval between B and C is called the data setup time and
is specified by the receiving device. At some point in the interval between time C and D the
receiving device reads the data bus. The receiving device then asserts the RxRdy signal low to
indicate to the sender that it has acquired the data. The sending device then asserts the TxReq
signal low at time E to indicate to the receiver that the data is no longer available on the data
bus. The data must not actually change until time F to meet the data hold time specified by the
receiving device. The minimum time between successive time points marked “A” is called the
cycle time. Regardless of how fast the sender is able to send data, the data maximum
exchange rate must conform to the specifications of the receiving device.

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 4 of 23

A B C D E F A B C D E F

Data

RxRdy
TxReq

Setup
Time

Hold
Time

Setup
Time

Hold
Time

Cycle Time

Figure 2. Timing diagram of four phase handshaking showing two complete cycles

Data sent in only one direction, as illustrated in Figure 1, is called simplex communications. For
bidirectional data exchanges, the handshaking signal must be mirrored as illustrated in Figure 3.
If the system does not support simultaneous bidirectional data exchanges, then it is called half
duplex communication. The communications between the PIC32 and the character LCD is an
example of half duplex communications. Full duplex communication refers to simultaneous
bidirectional data exchange and requires separate data paths.

Device A Device B

Data

B_Req

A_Req
B_Rdy

A_Rdy

Figure 3. Interconnection bi-directional for 4-phase handshaking

 A four-phase handshaking scheme can use an explicit strobe signal from the sender to the
receiver and implicit handshaking from the receiver to the sender. The sender assumes an
implicitly that the receiver is ready provided the timing constraints are met. Figure 4 and Figure
5 show two common four-phase handshaking interfaces. Since Device “A” controls both the
timing and the direction of the data flow, the configuration is commonly referred to as master-
slave operation. Figure 6 and Figure 7 show the timing for the four-phase handshaking with
implied receiver ready and acknowledge. In both cases, the interval between B and C is called
the data set up time and the interval between D and F is called the data hold time. In Figure 6,
the interval between A and B is called the control setup time and the time between D and E is
called the control hold time.

http://en.wikipedia.org/wiki/Simplex_communication
http://www.techterms.com/definition/half-duplex
http://www.techterms.com/definition/half-duplex
http://en.wikipedia.org/wiki/Duplex_(telecommunications)

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 5 of 23

Device A
(Master)

Device B
(Slave)

Data

Strobe

Rd/!Wr

Figure 4. Half duplex using an ENABLE
strobe and read / write control

Device A
(Master)

Device B
(Slave)

Data

Rd Strobe

Wr Strobe

Figure 5. Half duplex using separate read and
write strobes

A B C D E F

Data

Rd/!Wr
Strobe

Data
Setup
Time

Data
Hold
Time

Control
Setup
Time

Control
Hold
Time

Figure 6. Timing diagram of four-phase
handshaking with implied receiver ready
corresponding to Figure 4.

B C D F

Data

Rd or Wr
Strobe

Data
Setup
Time

Data
Hold
Time

Figure 7. Timing diagram of four-phase
handshaking with implied receiver ready
corresponding to Figure 5.

There is also two-phase handshaking scheme. The interested reader should refer to the web
link at Velocity Reviews to become informed on the differences between four-phase and two-
phase handshaking.

LCD Hardware Interface
The general hardware configuration for this project is shown in Figure 21 of Appendix A. The
shaded components are for reference only and are used in Projects 7 and 8. Figure 8 shows
the PIC32 Port and pin assignments for the interface to the Digilent PmodCLP character LCD. It
uses an LCD controller with operating characteristics common to many character LCD devices.
The PmodCLP Reference Manual references the data sheet for the Samsung KS0066.
Although LCD units produced by various manufactures have different number of characters per

http://www.velocityreviews.com/forums/t586101-4-phase-vs-2-phase-handshaking.html

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 6 of 23

line and different number of display lines, they have an interface that has become a de facto
standard. This interface will be discussed in detail in following paragraphs. The display
configuration of the PmodCLP unit has two display lines with each line capable of displaying 16
characters.

There are three signals that the microprocessor uses to control the LCD module. The Enable
signal is a read or write strobe depending on the whether the Read / !Write signal is high or low.
(The “!” character indicates that the signal is active when the signal is asserted low.) The action
of read or write is from the perspective of the microprocessor that serves as the master
controller. The register select (RS) signal determines whether data is exchanged with the
Instruction Register (IR) or Data Register (DR) inside the LCD Controller. In regards to the
handshaking discussion above, this interface represents a half duplex communications scheme.
Obviously the LCD handshaking conforms to what was described for Figure 4 and Figure 6.
There are two versions of the PmodCLP. As noted on the data sheet, the Rev A module
requires 5V power while other revisions use 3.3V power. The hardware configuration for this
project is shown in Figure 21 in Appendix A. It shows that test point headers are placed in series
with the LCD control lines. These test points will allow us to instrument the handshaking pins
and measure the timing parameters.

PIC32MX7

RE0 – RE7

RD5

RB15

RD4

Data Bus

Enable

Read / !Write

Register Select

RW

RS

E

D1 – D8

Character
LCD

Figure 8. Diagram of the PIC32 - LCD interface

The read cycle timing provided in Figure 9 shows that the RS and the R/W signals must be
asserted for a period equal to or longer than the time specified by the RW/RW setup time
parameter, tsu, prior to the E signal being asserted high. Also, prior to asserting the E signal
high, the processor IO pins used for the data lines must be set as inputs. The processor must
assert the E signal high for a minimum time as specified the period, tw. After the read data
output delay interval (tD), the processor will be able to read the data outputs from the LCD. The
LCD maintains the data output until the E signal has been asserted low plus the specified read
data hold time (tDH).

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 7 of 23

Figure 9. LCD Read cycle timing

Figure 10. LCD write cycle timing

Figure 10 shows the timing diagram for the LCD write cycle. The RS and the R/W signals must
be asserted for a period equal to or longer than the time specified by the RS/RW setup time, tsu
parameter prior to the E signal being asserted high. The diagram shows that the processor is
permitted to set the pins for output and write to data to the IO port any time so long as happens
at a time equal to or greater than the write data setup time, tsu1. The processor is expected to
maintain the data on the output lines constant for a period equal to or longer than specified by
the write data hold time, th1.

The minimum time that the read or write operation can be repeated is set by the enable cycle
time, tc. Table 1 provides the values for the timing parameters for both read and write cycles.

Table 1. LCD Signal Timing

LCD Software Interface
The PmodCLP LCD Reference Manual provides essential information for programming and
control of the character LCD. Like the PIC32 microprocessor, the character LCD has an
initialization or configuration phase and an operational phase. One approach to software

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 8 of 23

development for this project is to partition the software into six functions or modules as shown in
Figure 11. Detailed control flow diagrams for the LCD Read and the LCD Write functions are
provided by Figure 12 and Figure 13. These LCD read and write functions implement the
hardware interface and must be specifically written to match the hardware connections from the
microprocessor to the LCD unit. The remaining four LCD functional blocks depicted in Figure 11
are not dependent on hardware connections.

LCD
Write
(listing 3)

LCD
Read
(listing 4)

LCD
Initialization

(see fig. 14)

SW
Delay

LCD
Display
String
(listing 5)

LCD
Display

Character
(see fig. 15)

Application
Program

C
om

m
an

d
(d

at
a,

 R
S)

Command

(data, R
S)

m
s

da
ta

R
S

byte

string

byte

Figure 11. Data flow diagram for the LCD control

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 9 of 23

Set IO for Input
& RW = 1

LCD Read

Assert RS

Wait tSU

Assert E = 1

Wait tD

Read Data from IO

Wait tW - tD

Assert E = 0

return data

Figure 12. Control flow diagram for LCD read
operation

Set IO for output
& RW = 0

LCD Write

Assert RS

Assert E = 1

Wait tSU1

Assert E = 0

return

Wait tSU

Write data to IO

Wait tH1

Figure 13. Control flow diagram for LCD write
operation

The LCD controller has two sets of memory registers: one for configuring the LCD operations
and one for holding the data that generates the LCD display characters. The register select (RS)
signal controls which register inside the LCD controller is accessed for read and write
operations. The display memory is further divided into memory for the display of a fixed set of
symbols and characters and memory that can be used to generate user defined characters. The
Display Data Ram (DDRAM) is used for displaying the fixed text characters that are defined in
the PmodCLP reference manual. By default, all data is written to and read from the DDRAM
when the RS signal is high.

The Character Generator RAM (CGRAM) that is used to generate special symbols. (Accessing
the CGRAM and generating special LCD symbols and characters is beyond the scope of this

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 10 of 23

project. See Appendix C for information regarding configuring the LCD for this mode of
operation.)

Figure 11 shows that a common LCD write function is called from multiple tasks. The LCD Write
and Read are the two functions that provide the interface to the LCD hardware. Passing the
value that RS is to be set to for the LCD read and LCD write functions allows access to either
the display RAM or configuration register, limiting the hardware specific code to these two
functions. This minimizes the amount of code resulting in reduced development time, improving
portability of user code to different applications, and better memory resource utilization.

The configuration sequence is a series of commands written to the LCD after power up for CPU
reset. Page 3 of the PmodCLP LCD reference manual lists the commands and the timing delays
between writing the succession of initializing commands to the LCD. These delays can be
implemented using one of the delay functions that you developed in Project 2. The values that
are written to the LCD shown in Figure 14 configure the LCD for an 8 data line interface with a
blinking cursor. The cursor address is reset to zero and automatically increments as new
DDRAM data is written to the LCD. The cursor address is the memory address of the DDRAM
where the cursor is seen and the location where the next character written to the DDRAM will be
displayed.

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 11 of 23

LCD Initialize

Delay 37 ms

Delay 37 ms

Delay 1.52 ms

return

Delay 20 ms

LCD Write 0x38, RS = 0

LCD Write 0x0f, RS = 0

LCD Write 0x01, RS = 0

Set Function:
8 bit data,

2 line display,
5X8 dot font

Set Display:
Display on,
Cursor on,

Blink Cursor on

Clear Display:

Figure 14. Control flow diagram for the LCD initialization1

After initializing, display characters can be written to the LCD. The PmodCLP module has two
16-character lines. Each LCD character position is assigned a DDRAM address. The DDRAM
addresses of the first line of the LCD display are from 0 to 0x0F. The addresses of the second
display line are from 0x40 to 0x4F. The DDRAM addresses from 0x10 to 0x39 are not used. If a
character is written to DDRAM address 0x0F, the LCD will properly display the character in the
right-most position of the first line and increment the cursor address to the value 0x10. If
additional characters are to be displayed, the cursor address must be first reset to 0x40. The
process of repositioning the cursor position is described below.

1 It is recommended that you use generous delay values, e.g., 50 ms and 5 ms.

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 12 of 23

LCD_putc(char)

Read LCD Addr

YESControl
Char?

Past
EOL?

Process Character

Wrap to start
of next line

YES NO

LCD Write Char,
RS = 1

return

NO

LCD
Busy?

YES

NO

Figure 15. LCD display character control flow diagram – LCD_putc()

Figure 15 shows the control flow diagram for displaying a single character on the LCD using
LCD_putc(). Initially, the status of the busy flag and the current cursor address2 are read by
reading from the LCD with the RS signal set low and the RW signal set high. The most
significant bit (D7) of the data byte read from the LCD represents the busy flag: if this bit is set
to a one, the LCD is busy. The seven least significant bits in the byte read from the LCD
contain the DDRAM address of the cursor position.

2 The cursor address is not valid until the LCD controller busy flag is a zero.

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 13 of 23

The next step of the CFD shown in Figure 15 requires testing the character passed to this
function to determine if it is an ASCII control character. If the character is a carriage return
('\r') then the function will use the writeLCD function to reset the LCD address to the start of
the current line. If the character is a new line ('\n') then the address is set to the start of the
"next" line – switching from either the first line to the second or vice versa. Use of a switch-case
statement allows for future support of additional ASCII control characters. Changing the LCD
address (i.e., cursor location) is described in the following paragraph.

The final step requires determining if the cursor has incremented beyond the visible portion of
the display. If the cursor value is between 0x10 and 0x3F, the cursor must be repositioned to
the start of the second line or cursor address 0x40. This is accomplished by writing the new
cursor address, 0x40, added to the write DDRAM control bit, 0x80, resulting in a value of 0xC0
that is written to the LCD with the RS and RW signals set low. The writeLCD() routine will wait
until the busy flag is set to zero before writing the character to the LCD. The busy flag
represents a blocking semaphore or signal because the processor is held up waiting for the
busy flag to clear. Once the LCD busy flag is read as zero, the RS signal must be set high and
the RW signal set low as well as setting the PIC32 IO pins for output when writing the ASCII
value of the character to be displayed to the LCD. Similarly, if the cursor address is greater than
0x4F then it can be reset to the start of the first line (address 0x00) by writing 0x80 with the RS
line low.

Most LCD modules require multiple milliseconds to complete the CLEAR DISPLAY and
RETURN HOME commands. According to the Samsung KS006U data sheet, operations other
than READ BUSY FLAG and ADDRESS, CLEAR DISPLAY, and RETURN HOME operations
can require up to 43us to complete. The READ BUSY FLAG and ADDRESS operation requires
zero time to complete and hence the LCD BUSY FLAG can be polled at the maximum rate
provided by the minimum Enable cycle time shown in Table 1. The time to complete any write
operation varies from one LCD manufacturer to another. The Enable cycle time parameter, tC,
diagrams clearly shows that there is a maximum rate that the LCD can be accessed. For the
PmodCLP, the maximum rate is 2MHz.

Bit-Banging LCD Interface
Any microprocessor can interface to a character LCD using the technique called “bit banging”.
Bit-banging refers to the process of explicitly setting specific output pins either high or low as
required by the handshaking protocol. This is accomplished using software statements such as
LATxSET and LATxCLR instructions to control the state of the RS, RW, and E signals. The
interface shown in Figure 8 provides the PIC32 port and pin specifications to allow the LCD
control using this method. The code developer need only to write the software code to set the
control pins to the required values in the sequence described by the control flow diagrams
shown in Figure 12 and Figure 13. When using a high speed processor, such as the PIC32
running at 80MHz, additional delays may be needed to meet the minimum timing requirements.
For example, Listing 1 is the C code to implement the LCD_read function shown in Figure 12

http://en.wikipedia.org/wiki/Carriage_return
http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Semaphore_(programming)
http://pdf1.alldatasheet.com/datasheet-pdf/view/37317/SAMSUNG/KS0066U.html
http://en.wikipedia.org/wiki/Bit_banging

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 14 of 23

using the bit banging technique. The code in Listing 1 assumes that the setup and hold
requirements are met.

Listing 1. Example bit-banging code for the LCD_read function

#include <plib.h> // Defines BIT constants
#define LCD_DATA (BIT_0|BIT_1|BIT_2|BIT_3|BIT_4|BIT_5|BIT_6| BIT_7) // Port E
#define LCD_EN BIT_5 // Port D
#define LCD_RS BIT_15 // Port B
#define LCD_RW BIT_4 // Port D

int LCD_read(int RS)
{
 int status;
 PORTSetPinsDigitalIn(IOPORT_E, LCD_DATA); //Set as input to read
 mPORTDSetBits(LCD_RW); //LCD_RW set high to read LCD
 if(RS)

mPORTBsetBits(LCD_RS); //LCD_RS set high
 else

mPORTBClearBits(LCD_RS); // LCD_RS low
 mPORTDSetBits(LCD_EN); //Enable set high
 status = mPORTERead(); //Read BF and ADDR from LCD
 mPORTDClearBits(LCD_EN); //Enable set low
 return (status);
}

Parallel Master Port LCD Interface
The PIC32 family of processors is enabled with an addressable parallel port called the Parallel
Master Port or PMP. The Cerebot MX7cK processor board was designed to take advantage of
this resource when interfacing to the PmodCLP LCD. Using the PMP interface to the LCD is an
alternative method to the bit banging approach described above. It is beyond the scope of this
project to explain all of the various ways the PMP can be configured. In general, the PMP
consists of an eight or sixteen bit bidirectional parallel IO data bus, a dedicated or multiplexed
address bus, and control signals to allow read, write, and address latch enable operations.

The purpose of the PMP is to facilitate a single parallel data bus interface with multiple devices.
The general architecture of a parallel data bus is shown in Figure 16. One can readily see the
similarities among Figure 16, Figure 4, and Figure 8. Figure 17 illustrates the connection
between the PIC32 PMP signals and the LCD. Note that Figure 17 conforms to the same pin
assignments as shown in Figure 8.

The address bus is configured as a one-bit signal representing address signal A0 connected to
the LCD RS input. The PIC32 strobe output pin is connected to the LCD E input and the PIC32
read / write output control pin to the LCD R/W input. The PIC32 pins assigned to the PMP
functions are fixed in hardware. Refer to Appendix C of the Cerebot MX7cK Reference Manual
to determine which pins are used by the PMP.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 15 of 23

MASTER
(PROCESSOR)

Slave
(Peripheral)

ADDRESS
BUS

DATA BUS

READ STROBE

WRITE STROBE

DEVICE SELECT

Figure 16. Architecture of a parallel data bus

MASTER
(PIC32)

Slave
(LCD)

ADDRESS A0

DATA BUS

STROBE

READ / WRITE

RE0:7

RD5

RB15

RD4

RS

D0:7

R/W

E

Figure 17. PIC32 PMP interface with LCD

The first step in using the PIC32 PMP interface is to configure the PMP for the LCD interface.
Using the functions provided by the PIC32 Peripheral library (Section 17), the PMP is configured
with the four parameters in the statements shown in Listing 2.

Listing 2. PMP initialization code for LCD interface 3

int cfg1 = PMP_ON|PMP_READ_WRITE_EN|PMP_READ_POL_HI|PMP_WRITE_POL_HI;
int cfg2 = PMP_DATA_BUS_8 | PMP_MODE_MASTER1 |
 PMP_WAIT_BEG_1 | PMP_WAIT_MID_2 | PMP_WAIT_END_1;
int cfg3 = PMP_PEN_0; // only PMA0 enabled
int cfg4 = PMP_INT_OFF; // no interrupts used
mPMPOpen(cfg1, cfg2, cfg3, cfg4);

The first bit parameter in the variable cfg1 enables the PMP peripheral. The second bit
parameter enables both PMP read and write operations. The PMP_READ_POL_HI bit with the
PMP_WRITE_POL_HI bit results in setting the least two significant bits of the PMCON register
and indicates that the PMP read/write control is to be high when reading and low when writing.
The interpretation of these two bits is conditional on the PMP_MODE_MASTER1 control bits of
the PMMODE register and implements the handshaking operates as illustrated in Figure 4. The
variable cfg2 is written to the PMMODE register. The PMP_DATA_BUS_8 bit control specifies
that the data bus is 8 bits. The three PMP_WAIT controls are discussed in detail below.

The cfg3 variable is set for PMP_PEN_0 indicating that only PMP address bit 0 is enabled and
is written to the parallel port address register, PMADDR.

3 It is recommended that you use generous PMP settings of 4, 15, and 4.

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 16 of 23

The last parameter disables PMP interrupts. If the PMP interrupt is enabled, with the PMP
configured for the master mode, an interrupt will be generated on every completed read and
write operation. With the PMP interrupt disabled, the PMFLAG will need to be polled to
determine when the PMP read and write cycles are completed.

The WAIT controls in the PMP mode register control the timing of the assertion of the RD/WR
select signal in relation to the LCD Enable strobe. Each vertical dash line in Figure 18
represents on peripheral bus clock period marked TPB. The number of TPB periods for the “B”
period is specified by the PMP_WAIT_BEG_b (1 ≤ b ≤ 4) specified in the PMMODE
configuration setting in Listing 2. Likewise the M indicates the number of TPB periods that the E
signal will be active as specified by PMP_WAIT_MID_m (0 ≤ m ≤ 15). The minimum strobe
period is one TPB hence the total strobe period is PMP_WAIT_MID_x plus one. The E indicates
the number of TPB periods that the RD/WR signal will retains its value PMP_WAIT_END_e (1 ≤
e ≤ 4). For the case shown in Figure 18, the three parameters would be: PMP_WAIT_BEG_4,
PMP_WAIT_MID_6, and PMP_WAIT_END_2.

TPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPBTPB

B M ERD/WR

Enable

Figure 18. The PMP timing diagram for the beginning, middle and end wait periods.

The minimum settings for the three PMP WAIT intervals can be determined by dividing the
value for tSU on the LCD data sheet by TPB. For example, assume that the peripheral bus clock
is configured for 10MHz. The tSU specified in the PmodCLP reference manual is 40 ns resulting
in interval B equal to 0.4. Of course this should be rounded up so a proper setting is
PMP_WAIT_BEG_1. The value for the interval M is computed using the value specified for tW.
In this case, M+1 is equal to 2.5 and after rounding up and subtracting one, M equals 2. Hence
PMP_WAIT_MID_2 can be used. The value for interval E is 0.1 resulting in
PMP_WAIT_END_1. Since (B+[M+1]+E) * TPB represent the minimum time to complete an LCD
read or write operation. This minimum time must be greater than the LCD enable cycle time, tC,
which is specified as 500 ns. For the configuration described above, (B+[M+1]+E) * TPB = (5) *
100ns = 500ns thus satisfying the LCD timing specifications. If the cycle time is too short, wait
periods can be added to any segment within the allowable ranges.

Since the PMP is clocked from the peripheral bus clock, it is likely that the PMP cycle is slower
than the core CPU hence the PMP also has a busy flag that must be polled before writing or
reading the next byte. With the PMP interrupt disabled, the only way to tell if the PMP is ready

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 17 of 23

for the next read or write cycle is to poll the PMP flag. The PMPMasterWrite function provided in
the PIC32 Peripheral Library polls the PMP flag to ensure it has been cleared prior to writing.
The code for writing to the LCD is shown in Listing 3.

Listing 3. LCD write function using the PMP4

void writeLCD(int addr, char c)
{
 while(busyLCD()); // Wait for LCD to be ready
 PMPSetAddress(addr); // Set LCD RS control
 PMPMasterWrite(c); // initiate write sequence
} // End of writeLCD

Reading the PMP requires two successive read operations as shown in Listing 4.

Listing 4. LCD read function using the PMP

char readLCD(int addr)
{
 PMPSetAddress(addr); // Set LCD RS control
 mPMPMasterReadByte(); // initiate dummy read sequence
 return mPMPMasterReadByte();// read actual data
} // End of readLCD

For additional details concerning the PIC32 PMP, refer to Section 13 of the PIC32 Family
Reference Manual.

Project Tasks
The first task in this project is to write the six functions depicted in Figure 11 and use them in the
application program to alternate display of the two strings defined below using LCD_puts(),
separated by a 5 second delay. Partition your code so that all LCD-specific functions and
settings are contained in two files: LCDlib.h and LCDlib.c. The function, LCD_puts, was not
previously discussed but is shown in Listing 5. The flow diagram for the LCD_putc function is
provided in Figure 15.

char string1[] = "Does Dr J prefer PIC32 or FPGA??";
char string2[] = "Answer: \116\145\151\164\150\145\162\041";

Listing 5. Function to write a text string to the LCD

void LCD_puts(char *char_string)
{

4 busyLCD() reads the LCD Instruction Register using readLCD() and returns the LCD busy flag.

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 18 of 23

 while(*char_string) // Look for end of string NULL character
 {

LCD_putc(*char_string); // Write character to LCD
char_string++; // Increment string pointer

 }
} //End of LCD_puts

The second task is to verify through measurement that the handshake timing requirements
specified in the PmodCLP Reference Manual are satisfied. This is done by modifying your
program to continuously write a single character to the LCD using writeLCD(). Justify the
measured parameters with the setting specified in the PMP configuration using mPMPOpen.

Project Testing
The first task is verified by observing the LCD screen and visually checking that the proper text
is displayed on the proper lines of the LCD.

The second task requires measuring the timing of the LCD control and handshaking signals to
determine that the LCD minimum timing specifications are satisfied. Figure 19 shows the timing
of the RS, R/W and, E signals. Initially RS is low and RW is high when the E signal is pulsed
high indicating that the LCD busy flag and cursor address is being read twice in a row. (Why?)
The last enable pulse occurs when RS is set high and R/W is set low indicating a write
operation.

Figure 19. Screen capture of the LCD RS, RW and E signals for a single character write operation.

http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 19 of 23

Figure 20 zooms in on the write operation to allow better measurement of the actual tsu, tW, and
tH times. The falling edge of the R/W signal at marker for 1.1us and the rising edge of the E
signal at marker for 1.2us clearly shows that PMP_WAIT_BEG is set to one times TPB. The E
signal is high for 0.3us (marker 1.2us to 1.5us) showing that the PMP_WAIT_MID was set to 2.
(Remember that there is always at least one TPB period for the strobe signal. The number of M
wait period is added to the one TPB.) Record the measurements in Table 2 to show that the
minimum LCD timing specifications are satisfied.

Figure 20. Screen capture of the LCD write operation.

Table 2. LCD Bus Timing Results. (Measure using repeated writes, similar to Fig. 19)

Parameter Symbol Min Max Units Test Pin Measured

Enable Cycle
Time

tC 500 ns Enable

Enable High
Pulse width

tW 220 ns Enable

RS, RW set
up time

tSU 40 ns RS / RW

RS, RW hold
time

TH 10 ns RS / RW

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 20 of 23

Appendix A: Project 6 Parts Configuration

2X16
Character

LCD
PMCLP
PMod

PmodSTEP
LED &

Stepper
Motor Driver

PC
MPLAB

IDE

Cerebot PIC32
MX7ck

J2
USB / UART1

Serial
Terminal

PMP Data Bus - JB

PMP Ctrl Bus – JC
Pins 7, 8, and 9

Port B – JA
(5V

Operation)

DEBUG USB
(5V PWR)

Push
Buttons
BTN1 &
BTN2

PG.6
PG.7

Stepper Motor

Connections for future unit
designs

PmodTPH

Test Point Header

Figure 21. Block diagram of the equipment used in Project 6.

HHaannddsshhaakkiinngg aanndd LLCCDD CCoonnttrrooll
wwiitthh tthhee CCeerreebboott MMXX77ccKK™™
Revision: 10May2019 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 21 of 23

Appendix B: PmodCLP

R
S

EN
A

B
LER
/W

Figure 22. PmodCLP Character LCD pin identification

mailto:rwall@uidaho.edu
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf

HHaannddsshhaakkiinngg aanndd LLCCDD CCoonnttrrooll
wwiitthh tthhee CCeerreebboott MMXX77ccKK™™
Revision: 10May2019 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 22 of 23

Appendix C: LCD Custom Characters
 When you send the ASCII code for a character like "A" to an LCD module, the LCD controller
looks up the appropriate 5x8-pixel pattern in ROM (read-only memory) and displays that pattern
on the LCD. That character-generator ROM contains 192 bit maps corresponding to the
alphabet, numbers, punctuation, Japanese Kanji characters, and Greek symbols.

The ROM is part of the main LCD controller (e.g., HD44780, KS0066, etc.), is mask-
programmed, and cannot be changed by the user. The manufacturers do offer alternative
symbol sets in ROM for European and Asian languages, but most U.S. distributors stock only
the standard character set shown in the LCD Serial Backpack manual.

Alphanumeric LCD controllers do not allow you to turn individual pixels on or off - they
just let you pick a particular pattern (corresponding to an ASCII code) and display it on the
screen. If you can't change the ROM and you can't control pixels, how do you create graphics
on these LCDs? Easy!

There's a 64-byte block of RAM (random-access memory) that the LCD controller uses
in the same way as it does for the ROM based character-generator. When the controller
receives an ASCII code in the range that's mapped to the CGRAM, it uses the bit patterns
stored there to display a pattern on the LCD. The main difference is that you can write to
CGRAM, thereby defining your own graphic symbols.

A character LCD that uses the HD44780 or the KS0068 controller allow for eight
programmable characters. The character patterns must be initially programmed into the
CGRAM of the LCD. First, the CGRAM must be select by setting the CGRAM address for the
character that is to be programmed. Each eight consecutive addresses starting at CGRAM
address zero are assigned to one programmable graphical character. Each bit of the data at
each address sets the pixel on (1) or off (0). The pixels on a particular row at the right of the
character display have the lowest binary value. The rows of pixels start at the top and move
down the character as the addresses increase in value as shown in Figure 23.

mailto:rwall@uidaho.edu

Handshaking and LCD Control
with the Cerebot MX7cK™

 page 23 of 23

Figure 23. Example bit map for a programmable graphical character.

A WEB based character calculator can be use to help determine the list of bytes that
need to be written to the CGRAM.5 6 Be advised that the calculator in the second reference only
generates seven bytes of data and does not specify data for the bottom row of pixels. Writing to
CGRAM is a lot like moving the cursor to a particular position on the display and displaying
characters at that new location. The steps are shown in Listing 6.

Listing 6. Steps to program graphical characters

• Reset RS and R/W pins of the LCD to prepare the LCD to accept instructions.
• Set the CG RAM address by sending an instruction byte from 64 to 127 (locations 0-63

in CG RAM).
• Switch to DATA MODE by changing setting the RS pin.
• Send bytes with the bit patterns for your symbol(s). The LCD controller automatically

increments CG RAM addresses, just as it does cursor positions on the display.
• To leave CGRAM, switch to COMMAND MODE to set the address counter to a valid

display address (e.g., 128, 1st character of 1st line); the clear-screen instruction (byte 1);
or the home instruction (byte 2). Now bytes are once again being written to the visible
portion of the display.

• To see the custom character(s) you have defined, print ASCII codes 0 through 7.

5 http://www.geocities.com/dinceraydin/lcd/charcalc.htm

6 http://www.quinapalus.com/hd44780udg.html

http://www.geocities.com/dinceraydin/lcd/charcalc.htm
http://www.quinapalus.com/hd44780udg.html

	Project 6: Handshaking and LCD Control
	Purpose
	Minimum Knowledge and Programming Skills
	Equipment List
	Software Resources
	Programming Concepts
	Handshaking – What and Why
	LCD Hardware Interface
	LCD Software Interface
	Bit-Banging LCD Interface
	Parallel Master Port LCD Interface

	Project Tasks
	Project Testing
	Appendix A: Project 6 Parts Configuration
	Appendix B: PmodCLP
	Appendix C: LCD Custom Characters

