Lab 7 Report Topics and Questions

ECE341, University of Idaho

Demonstration

In addition to the specifications in the lab handout:

- Your design must be modular. This means that you must have a source file and header for each subsystem. The four primary subsystems are listed below:
 - LCD
 - * Copy LCDLib.c and LCDLib.h
 - UART
 - * Copy the supplied code from comm.c and comm.h
 - Buttons:
 - * Change Notice ISR
 - * Decode buttons
 - Stepper Motor:
 - $\ast~{\rm Timer1~ISR}$
 - * Stepper state machine
 - * Stepper code output
- Each subsystem must have its own initialization function, and a header that prototypes the functions in its respective source file. Note: you can use **extern** to access global variables that are declared in a different C file.
- The source file that contains main should include the header files for each peripheral, call the subsystem initialization functions, and facilitate the data transfer between subsystems.
- Each subsystem must be individually testable, meaning that each subsystem could be instantiated into a new project and tested without the other subsystems.

Report

- In the implementation section:
 - Why are the UART receive functions (getstrU1, getcU1) in the background? What would happen if they were in the foreground?
 - What is the purpose of the _mon_putc function?
 - The CFD for the project must include the CFD sub-diagram for the function getstrU1. Essentially, read and understand the code that was supplied to you and use it to derive a CFD.
- In the testing and verification section:
 - Describe how each subsystem was incorporated into the project.
 - When a subsystem was added, how did you test it? Describe the testing process for each subsystem.
- In the conclusion:
 - Address the advantages and disadvantages of serial and parallel communications. When might it be better to use one over the other? Support your answer with examples.
 - Why is it important for a design to be modular?