
AAssyynncchhrroonnoouuss CCoommmmuunniiccaattiioonnss
wwiitthh tthhee CCeerreebboott MMXX77ccKK™™
Revision: 13 Oct 2021 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 1 of 20

Project 7: Asynchronous Serial Communications

Project 7: Asynchronous Serial Communications ... 1

Purpose ... 2

Minimum Knowledge and Programming Skills ... 2

Equipment List ... 2

Software Resources ... 2

Asynchronous Communications Concepts .. 3

UART and RS-232 .. 5

RS-232 Connector Hardware ... 6

Managing Text Strings .. 8

UART Programming .. 10

Project Tasks ... 11

Project Specifications .. 12

Project Testing .. 13

Appendix A: Project 4 Parts Configuration ... 14

Appendix B: PmodCLP ... 14

Appendix C: PIC – UART C Code ... 15

mailto:rwall@uidaho.edu

Asynchronous Communications
with the Cerebot MX7cK™

 page 2 of 20

Listing 5: comm header file ... 15

Listing 6: comm C file .. 15

Purpose
The purpose of this project is to learn about asynchronous communications and how to

communicate with a microcontroller using a terminal emulation program to implement a point to
point serial link between the Cerebot MX7cK and a PC. This project models a system that has
both local and remote control.

Minimum Knowledge and Programming Skills
1. Knowledge of C or C++ programming
2. Working knowledge of MPLAB IDE

3. IO pin control
4. ASCII character encoding
5. Use of PC based terminal emulations (Hyperterminal or Putty)

Equipment List
1. Cerebot MX7cK processor board
2. Microchip MPLAB ® X IDE
3. Microchip XC32 Compiler
4. Digilent PmodCLP Parallel Character LCD
5. PC with terminal emulation software (Hyperterminal or Putty)

Software Resources
1. Cerebot MX7cK Board Reference Manual

2. Digilent PmodRS232 Reference Manual

3. MPLAB ® X Integrated Development Environment (IDE)

4. XC32 C/C++ Compiler Users Guide

5. PIC32 Peripheral Libraries for MBLAB C32 Compiler

6. PIC32 Family Hardware Reference Manual Section 21 UART

7. C Programming Reference

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf
http://en.wikipedia.org/wiki/ASCII
http://www.developershome.com/sms/howToUseHyperTerminal.asp
http://the.earth.li/%7Esgtatham/putty/0.58/htmldoc/Chapter3.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_90.zip
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://en.wikipedia.org/wiki/Computer_terminal
http://www.hilgraeve.com/hyperterminal-trial/
http://download.cnet.com/PuTTY/3000-7240_4-10808581.html
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://www.digilentinc.com/Data/Products/PMOD-RS232/PmodRS232_rm_Rev%20B.pdf
http://microchip.wikidot.com/mplab:_start
http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61107G.pdf
http://www.w3schools.in/c-programming-language/intro/

Asynchronous Communications
with the Cerebot MX7cK™

 page 3 of 20

Asynchronous Communications Concepts
Asynchronous communications is a serial data protocol that has been in use for many years.
Normally eight bits of data are transmitted at a time. There are other less commonly used
modes that can send 5, 6, or 7 bits of data. Each byte of data is framed by a start bit and a stop
bit. A symbol is defined as a start, data, parity, or stop bit. It is common to define
communications speed as bits per second. The bit rate is defined as the inverse of the period of
a unit symbol. Although the common standard bit rates are 50, 75, 110, 134, 150, 200, 300,
600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, and 115200, communications is
possible at any rate provided that the sender and receiver use the same rate. For most
asynchronous communications, the term, “baud”, is commonly used interchangeably with the
term “bit rate”.

As shown in Figure 1, the idle state of the transmit signal is a logic one or a high voltage level. A
start bit is signified by a high to low transition and remains low for one symbol time. The start bit
is followed by eight data bits. A logic zero is sent when the signal is a low voltage level for one
symbol time. Similarly, a logic one is sent when the signal is a high voltage level for one symbol
time. After the transmitting of the data (least significant bit first) there may be an optional parity
bit. The parity bit is used for error detection and can be set for even parity or odd parity. For
even parity, the parity bit is set high if the number of ones in the preceding eight data bits are
odd thus making the total number of 1’s in the data plus parity bit even. Conversely, for odd
parity, the parity bit is set high if the number of ones in the 8 data is even. The stop bit(s) is
always a logic 1 or high voltage level. If the signal remains high for longer than one symbol
period, the stop bit can be thought of as the stop or idle period and may remain in the idle
condition arbitrarily long.

http://en.wikipedia.org/wiki/Asynchronous_serial_communication
http://electronicdesign.com/communications/what-s-difference-between-bit-rate-and-baud-rate
http://en.wikipedia.org/wiki/Asynchronous_serial_communication
http://www.cse.wustl.edu/%7Ejain/cis677-96/ftp/e_6com2.pdf

Asynchronous Communications
with the Cerebot MX7cK™

 page 4 of 20

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

- 0.00005 0

01 1 1 1 1 1 1 1 1 1 10 0 0 0

MARK
(1)

SPACE
(0)

S
T

A
R

T
D

0

D
2

D
1

D
4

D
3

0.00005
Seconds

0.0001 0.00015 0.0002S
T

O
P

O
D

D

P
A

R

S
T

O
P

ST
AR

T
D

0
D

1

D
2

D
3

D
4

D
5

D
6

D
7

D
5

D
7

D
6

O
D

D

P
A

R

ID
LE

Processor signal sample points

Figure 1. Example of an 115kB asynchronous serial data stream with odd parity

The receiving device unit must use the same bit rate as the sending unit. In the process of
receiving serial communications, a processor may generate up to three error flags. A parity error
is generated if the parity bit is the incorrect voltage level. The second type of error is is a framing
error that is generated if a low voltage level is received in the stop bit position. Thirdly, an
overrun error is generated if a software instruction does not read the data byte from the receive
buffer before the next byte of data is completely received resulting in the new data byte
overwriting the previous data byte.

Each new start bit synchronizes the sampling of the receiving unit. Generally, the receiver
recovers the transmission using a clock that is an even multiple of the bit rate. When the
receiving unit detects the falling edge of the START bit, it waits one half the symbol period and
samples the receive data line. This is illustrated by the processor sample points in Figure 1. If
the logic state of the line is zero, then it is recognized as a valid start condition. The receiver
then waits full periods to sample the receive data line until all data bits plus any parity bit plus
the stop bit have been received. If a stop bit is not received, a framing error is generated.

 Just like parallel communications, there are three modes of serial communications: full
duplex, half duplex, and simplex. Full duplex describes the operation when a device can
simultaneously send and receive data. Half duplex operation allows both sending and receiving
but not simultaneously. Simplex operations are where the device can only send or receive data.

Asynchronous Communications
with the Cerebot MX7cK™

 page 5 of 20

 The actual data rate is defined as the number of data bits per unit time. Data efficiency is
defined as the number of data bits divided by the total number of bits. In this example (RS-232),
the efficiency is at best 80% because there are always two extra control bits (start and stop bit)
sent for each 8 data bits. If parity is used, the efficiency drops to 73% because 11 bits are
needed to communicate 8 bits of data.

UART and RS-232
UART - A Universal Asynchronous Receiver/Transmitter, abbreviated UART, is a type of
"asynchronous receiver/transmitter". A UART is an electronic device or microprocessor
peripheral that translates data between parallel and serial forms. UARTs are usually capable of
full duplex communications.

UARTs are typically used in conjunction with asynchronous communication standards such
as IrDa, SDI-12, EIA, RS-232, RS-422 or RS-485. RS-232 is a commonly used standard that
originated in the early 1960’s. The standard defines, the connector pins, the data rates, and
voltage levels. The RS-232 standard requires a signal driver that inverts and amplifies the
voltages representing logic one and zero. This signal driver IC is on the PmodRS232. As shown
in Figure 2, the RS-232 data is bi-polar: +3 TO +12 volts indicate an "ON or 0-state (SPACE)
condition" while A -3 to -12 volts indicates an "OFF" 1-state (MARK) condition. (Note the
inversion of the logic on the output of the driver IC.) Modern computer equipment ignore the
negative level and accepts a zero voltage level as the "OFF" state. For many present day
UARTs, the "ON" state may be achieved with lesser positive potential. This means circuits
powered by 5 VDC are capable of driving RS-232 circuits directly; however, the overall physical
range that the RS-232 signal may be transmitted / received may be dramatically reduced.

Since the RS-232 transmit driver will actively drive the communications line both to high and low
voltage levels, it is generally not used in a communications network that consists of many
transmitters and receivers sharing a common electrical line. It can, however, be used in a
simplex operation where one transmitter communicates with many receivers. Although the
PIC32 can host up to six asynchronous serial ports, the Cerebot MX7cK can host up to two –
UART1 and UART2.

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://en.wikipedia.org/wiki/Infrared_Data_Association
http://en.wikipedia.org/wiki/SDI-12
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-485
http://www.arcelect.com/rs232.htm

Asynchronous Communications
with the Cerebot MX7cK™

 page 6 of 20

Figure 2. RS-232 signal levels for a asynchronous serial communications

RS-232 Connector Hardware
PCs and other computer systems that have capability to communicate using the RS-232
standard typically use a DB-9 connector to interface with the communications wires. The pin
number assignments for a female DB 9 connector are shown in Figure 3. The functionality of the
DB 9 connector pins are made on the basis of the connector attaching to Data Terminal
Equipment (DTE) or Data Communications Equipment (DCE). The DTE refers to the end
device that uses or generates the information. It is the connector on the back of the PC. The
DCE refers to equipment that transmits or receives analog or digital signals over the connecting
media. It is sometimes called the modem (modulator / demodulator). The connecting media can
be wire, fiber optic cable, water (in the case of acoustic modems), or space for cases such as
radio frequency (RF) and infrared (IR) modems. Figure 4 shows the pin and functionality for a
DTE to DCE connection.

http://en.wikipedia.org/wiki/RS-232

Asynchronous Communications
with the Cerebot MX7cK™

 page 7 of 20

Figure 3. Pin numbering for a female 9 pin Sub D connector

Figure 4. DB 9 pin designations for DTE to DCE connection

A Null Modem is sometimes referred to as a cross-over cable at allows two devices that have
the same DTE or DCE connectors to communicate with each other directly. The connection
diagram for a NULL modem shown in Figure 5 illustrates the cross over connections for the Tx
and Rx signals as well as the optional handshaking signals.

Asynchronous Communications
with the Cerebot MX7cK™

 page 8 of 20

Figure 5. DB 9 pin designations for DCE to DCE Null Modem connections

Managing Text Strings
The data that is communicated over a serial communications connection is not constrained to
ASCII text. However, using only ASCII text frequently simplifies the development of a
communication system. The interface with the LCD used in Project 6 is an example of parallel
communication using ASCII text strings. In C, a text string is an array of characters that uses the
data value of zero to indicate the end of the string regardless of the array size (provided the
string length is less than the array size.) The character data type, “char” is 8-bit that may be
signed or unsigned. The data type of signed is assumed if not explicitly declared as unsigned.

There are two methods for handling serial data – a character at a time or a line at a time. The
programs provided by the code provided in Appendix C handles both character based and string
based drivers for the serial port. There is no constraint for the value of data communicated using
character the based functions “getcU1” and “putcU1”. The value of data communicated using
string based functions, “putsU1” and “getstrU1”, are constrained to ASCII encoded characters.

Normally, the “getcU1” and “getstrU1” functions are both blocking functions. This means that
when the function “getcU1” is called, it will wait indefinitely for a serial character to be received.
Since ““getstrU1”” calls the function, “getcU1” and waits for all characters in the string to be
received, it too is a blocking function. The code provided in Appendix C has been written
specifically to avoid the blocking problem. Greater detail on the implementation of the non-
blocking getcU1 and getstrU1 functions is provided in the code documentation.

Writing an ASCII string to the serial port is handled by the “putsU1” function. ASCII control
characters, carriage return (CR, 0x0D, ‘\r’) and line feed (LF, 0x0A, ‘\n’) are automatically added
to the end of the text string. The prototype for this function is “int putsU1(const char *s)”. Even

http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII

Asynchronous Communications
with the Cerebot MX7cK™

 page 9 of 20

though this prototype implies that a value is returned, in reality the value returned has no
meaning. The character array, “str”, must be a null terminated text string. Two examples of
using the “putsU1” function are shown in Listing 1.

Listing 1. Examples of methods to use the putsU1 function.

putsU1(”Hello World”); // Constant text string

char str[32]; // Size of the character array must anticipate the
 // longest possible string plus 1.
sprintf(str,”Hello World”);
putsU1(str); // Variable text string set to “Hello World”

Both of the methods shown in Listing 1 are equivalent to printf(“Hello World\r\n”);

The “getstrU1” function will return an entire string of text. When the string of data is sent over
the serial port, the end of the text line is indicated by the carriage return character or when the
number of characters received equals the value specified by a parameter to limit the string
length. (This string limit value prevents buffer overflows that cause systems to crash.) When a
carriage return character is received, it is replaced in the receive string array by a null character
(value = 0x00). In the case where the number of characters received reaches the specified
limit, the last element in the receiving string array is set to zero (null). The line feed ASCII
control character is ignored. The “getstrU1” function also processes the BACKSPACE character
such that a destructive backspace operation is implemented. (Characters are deleted during
backspace operations. This operation is sometimes referred to as destructive backspace that
implements the same operation as the backspace key on PC terminal emulator.)

 The prototype for the “getstrU1” is “char * getstrU1(char *s, int len);” The function returns
a pointer to the character string “str”. Listing 2 shows how to call the “getstrU1” function.

Listing 2. Exampe code for using the “getstrU1” function.

char str[20]; // Buffer size is set to hold the maximum expected
 // number of characters per line plus 1.

while(!getstrU1(str, sizeof(str)));

 Passing numerical data over text strings can be difficult without a mechanism to parse
the data from the fields of data in the string. The Microchip XC32 compiler supports the “sscanf”
function. To use “sscanf”, you must include <stdio.h> at the top of the program. Additional
string functions such as strcmp(s1,s2) (string compare) and strcpy (s1,s2) (string copy) are
available by including <string.h>. The reader is referred to the Microchip 32-Bit Language Tools
Library guide for additional information on functions to assist processing string data. The code
shown in Listing 3 illustrates the use of the “sscanf” function. For this illustration, assume that
the text “123 444 dog cat” is sent to the PIC32MX7 UART.

http://ww1.microchip.com/downloads/en/DeviceDoc/51685E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51685E.pdf

Asynchronous Communications
with the Cerebot MX7cK™

 page 10 of 20

Listing 3. Example code for using the string scanf function

#include <stdio.h>
#include <string.h>
int main(void)
{
char str[21]; // Buffer size is set to hold the maximum expected

// number of characters per line plus the NULL terminator
int x1, x2;
char s1[5], s2[5];

while(!getstrU1(str, sizeof(str)));
 sscanf(str,”%d %d %s %s”, &x1, &x2, s1, s2);
}

The format of the string to be parsed with the “sscanf” function indicates that two integer values
will be followed by two strings. The ASCII space character for this example is the delimiter (field
separator). After the “scanf” function has executed, x1 will equal 123 and x2 will equal 444. The
character arrays s1 and s2 will contain the null terminated strings “dog” and “cat” respectively.
These strings s1 and s2 must be of sufficient length to hold the maximum number of characters
parsed into these strings to avoid run time errors. Notice the arguments in the variable list are
passed by reference. When entering the input string, the space character is the delimiter or
separator between parameters. If more than one space character is entered between
parameters, the additional space characters are ignored.

UART Programming
 The UART peripheral must be initialized to set the communications bit rate, the parity
option, and the number of data bits to send and receive. Additionally, the transmit and receive
have separate enable bits. The XC32 peripheral library provides the UART open function shown
in Listing 4.

Listing 4. UART 1 initialization code

OpenUART1((UART_EN | UART_BRGH_FOUR | UART_NO_PAR_8BIT),
 (UART_RX_ENABLE | UART_TX_ENABLE) , brg);

The UART_EN bit sets the transmit and receive IO pins for their alternate function to support
UART communications. The parameter, UART_BRGH_FOUR, specifies that the reconstruction
clock rate as four times the serial port bit rate. The reconstruction clock is used to set the
sample points in the middle of the symbol as illustrated in Figure 1. Hence the third parameter
in the OpenUART function, brg, is determined by dividing the peripheral bus clock by four times
the desired bit rate.

http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf

Asynchronous Communications
with the Cerebot MX7cK™

 page 11 of 20

The UART_NO_PAR_8BIT option specifies both the data size and no parity bit for error
detection. To use even parity error detection, substitute UART_EVEN_PAR_8BIT or, for odd
parity, use UART_ODD_PAR_8BIT into this parameter field.

Appendix C contains the code for UART operations. UART1 is initialized by calling the function,
initialize_uart1(int bit_rate, int parity) from the users application. The parity parameter can
be specified as NO_PARITY, EVEN_PARITY, or ODD_PARITY. Other serial communication
functions provided in the code shown in Appendix C are for transmitting and receiving single
characters and sending and receiving text strings.

The serial receive functions, getcU1 and getstrU1 were developed specifically to be non-
blocking. They will return a value to the calling function indicating whether there is new
data available. These functions return a false value if no new data has been received.
When new data has been received, a logical true is returned. The actual character or
string is contained in a variable that is passed by reference.

The code provided in Appendix C can be easily converted to use UART 2 by changing all
references to UART1 to UART2 and U1 to U2.

Project Tasks
The data that is entered on the PC using the terminal emulation program will be echoed to the
LCD and it will be decoded to set the stepper motor parameters direction, mode, and stepper
motor speed. The code that reads and decodes the serial data and sets the stepper motor
operating parameters will run in the background while all of the preemptive code from Project 5
will run in the foreground. For this project, you will need to replace fixed pre-computed step
delay times with a formula that computes the step delay time at run time from a range of RPM
values.

After you have correctly merged the Project 5 code with the UART handling code, you will
observe that, although the program is waiting for data from the UART, due to the use of
preemption, the stepper motor will continue to run and button inputs will continue to be detected.

The specifications require that the LCD be updated in the “while(1)” loop in the main function
and also within the decode buttons function called by the change-notice (CN) ISR. Since all
LCD operations are non-reentrant, the operations involving the LCD in the main function must
be protected from CN interrupts1. This is most efficiently accomplished by disabling the CN

1 Technically, the global variables representing the motor settings should also be protected, but they can be
changed much more quickly compared to the LCD.

Asynchronous Communications
with the Cerebot MX7cK™

 page 12 of 20

interrupts using the macro provided by the C32 Peripheral Library, “mCNIntEnable(FALSE)” to
disable CN interrupts and “mCNIntEnable(TRUE)” to re enable CN interrupts.

 To prevent getting overwhelmed by the magnitude of the number of files in this project, I
suggest that you start with the UART function – sending and receiving text strings and using the
“sscanf” function to parse the direction, mode, and stepper motor speed data. Temporarily,
comment out the portions of the initialization function that enable the Timer 1 and CN interrupts.

 Following the development of the UART code, add the LCD operations. Finally, add the
Project 5 operations by removing the comments for the section of code that enables the
interrupts. Remember to call the initializing functions for the UART and the LCD prior to
attempting to use those resources.

Project Specifications
 The hardware configuration for Project 7 is shown in Figure 6. It requires all of the code and
hardware used for Projects 5 and 6 in addition to hardware and software to support the serial
communications with the PC. This project will require you to input text data from the serial port
that will set the direction, mode, and speed of the stepper motor. This interface will be in
addition to all of the controls provided in Project 5. The text from the serial port will be echoed to
the LCD. It will be good for you to review the documentation on how the following text
manipulating functions are implemented: printf, sprintf, scanf, and strcmp,

The functional specifications are:

1. Communications will use the PC terminal emulation program for a bit rate of 19200, odd
parity, 8 data bits and one stop bit.

2. The UART serial text handling code will be contained in the main function “while(1)”
loop.

3. The text will be entered using the format direction, mode, and speed in rpm with space
delimiters. For example the text, “CW FULL 11” will be interpreted as clockwise
direction, full step mode, at 11 RPM. You will use the following text to control the stepper
motor:

a. Direction – CW or CCW
b. Mode – HALF or FULL
c. RPM – range of 1 to 30 (integer values only)

4. After receiving the line of text from the UART, you will clear the LCD before echoing the

received string from the UART to line 1 of the LCD.

5. Next, use the “sscanf” function to parse the text string.

Asynchronous Communications
with the Cerebot MX7cK™

 page 13 of 20

a. You will need two string array variables to hold the direction and mode settings.
A third integer variable will hold the value for RPM.

b. The direction and mode string variables can be decoded using the string
compare function “strcmp”. An example of using this function would be:

x = strcmp(mode_txt,”FULL”);

Only if the string of data in mode_txt is exactly equal to FULL will the value of “x”
equal zero. You must include <string.h> to be able to use this function.

c. After decoding the string data, set the global variables that control direction,
mode, and step delay (computed from RPM).

6. Create a C source file and call it project7.c. This program will contain the function main
and process the serial text. Put the following tasks inside the while(1) loop:

a. Wait for line of text using the “getstr” function
b. Disable CN interrupts
c. Clear the LCD
d. Echo the string to the LCD
e. Parse the string into the three variables
f. Set the stepper motor control global variables
g. Enable CN interrupts

7. Modify the button decode function to report the stepper motor settings to the LCD and to
the PC terminal emulation program via the serial port using the same format as in Step
3. The text string should be sent to the UART using the “printf” function.

8. BTN1 and BTN2 will operate as they did in Project 5 in terms of motor settings.

Project Testing
1. Create a function check list and verify that the system performs to the specifications.

(Include with your report.) See “Lab report questions” for more details.

Asynchronous Communications
with the Cerebot MX7cK™

 page 14 of 20

Appendix A: Project 7 Parts Configuration

2X16
Character

LCD
PMCLP
PMod

PmodSTEP
LED &

Stepper
Motor Driver

PC
MPLAB

IDE

Cerebot PIC32
MX7ck

JB Pins 3 & 4
RF8 – TX
RF2 - RX

PmodRS232

PMP Data Bus - JB

PMP Ctrl Bus – JC
Pins 7, 8, and 9

RB2:10 – JA
(5V

Operation)

DEBUG USB
(5V PWR)

Push
Buttons
BTN1 &
BTN2

PG.6
PG.7

Stepper Motor

Test Point Header

PmodTPH PC Serial
Port

UART
crossover

cable

Figure 6. Block diagram of the equipment used in Project 72.

Appendix B: PmodCLP

2 We no longer use the PmodRS232. Instead, a USB cable connects the PC to the UART connector on the Cerebot.

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP

Asynchronous Communications
with the Cerebot MX7cK™

 page 15 of 20

R
S

EN
A

B
LER
/W

Figure 7. PmodCLP Character LCD pin identification

Appendix C: PIC – UART C Code

Listing 5: comm header file
/* File name: comm.h
 * Author: Richard Wall
 * Date: June 12, 2012
 */

#ifndef __COMM_H__
 #define __COMM_H__
 #define BACKSPACE 0x08
 #define NO_PARITY 0
 #define ODD_PARITY 1
 #define EVEN_PARITY 2
#endif

void initialize_uart1(unsigned int bit_rate, int parity);
void _mon_putc(char c); // Called by system to implement "printf" functions
int putcU1(int c); // Sends single character to UART
int getcU1(char *ch); // Gets single character from UART
int putsU1(const char *s); // Send string to UART1
int getstrU1(char *s, unsigned int len); // Gets string from UART
// End of comm.h

Listing 6: comm C file
/* File name: comm.c

http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf

Asynchronous Communications
with the Cerebot MX7cK™

 page 16 of 20

 * Author: Richard Wall
 * Date: June 12, 2013
 *
 * This code also provides access to the "printf" function
 * on UART Serial Port 1
 *
 * Cerebot MX7cK requires UART crossover cable
 * Connector Pin Pmod Pin Function
 * 2 4 MX7 Rx
 * 3 3 MX7 Tx
 * 5 5 Gnd
 * 6 6 Vcc
*/

#include <plib.h>
#include <stdio.h> // required for printf
#include "comm.h"
#include "CerebotMX7ck.h" // has info regarding the PB clock

/* initialize_comm FUNCTION DESCRIPTION ************************************
SYNTAX: void initialize_comm(unsigned int bit_rate, int parity);
KEYWORDS: UART, initialization, parity
DESCRIPTION: Initializes UART1 comm port for specified bit rate using

the assigned parity
PARAMETER 1: bit_rate: the communications bit rate
PARAMETER 2: parity: NO_PARITY, ODD_PARITY, or EVEN_PARITY
RETURN VALUE: None
NOTES: 9 bit mode MARK or SPACE parity is not supported
END DESCRIPTION **/
void initialize_uart1(unsigned int bit_rate, int parity)
{
unsigned int brg;

 brg = (unsigned short)(((float)FPB / ((float)4 * (float) bit_rate))-
 (float)0.5); // provides rounding for greatest accuracy
 switch(parity)
 {
 case NO_PARITY:
 OpenUART1((UART_EN | UART_BRGH_FOUR | UART_NO_PAR_8BIT),
 (UART_RX_ENABLE | UART_TX_ENABLE) , brg);
 break;
 case ODD_PARITY:
 OpenUART1((UART_EN | UART_BRGH_FOUR | UART_ODD_PAR_8BIT),
 (UART_RX_ENABLE | UART_TX_ENABLE) , BRG);
 break;
 case EVEN_PARITY:
 OpenUART1((UART_EN | UART_BRGH_FOUR | UART_EVEN_PAR_8BIT),
 (UART_RX_ENABLE | UART_TX_ENABLE) , BRG);

Asynchronous Communications
with the Cerebot MX7cK™

 page 17 of 20

 break;
 }
 printf("\n\rCerebot MX7ck Serial Port 1 ready\n\r");
}

/* _mon_putc FUNCTION DESCRIPTION **

SYNTAX: void _mon_putc(char c);
KEYWORDS: printf, console, monitor
DESCRIPTION: Sets up serial port to function as console for printf.
 This function is used only by system.
PARAMETER 1: c: The character to send to monitor
RETURN VALUE: None
NOTES: This function will block until space is available

in the transmit buffer
END DESCRIPTION **/
void _mon_putc(char c)
{
 while(BusyUART1());
 WriteUART1((unsigned int) c);
} // end of _mon_putc

/* putcU1 FUNCTION DESCRIPTION **
SYNTAX: int putcU1(int c);
KEYWORDS: UART, character
DESCRIPTION: Waits while UART1 is busy (buffer full) and then sends a
 single byte to UART1.
PARAMETER: c: character to send
RETURN VALUE: character sent
NOTES: This function will block until space is available in the
 transmit buffer. The data type for the parameter, “c” is
 int but only the least significant 8 bits of the parameter
 are sent out the serial port.
END DESCRIPTION **/
int putcU1(int c)
{
 while(BusyUART1());
 WriteUART1((unsigned int) c);
 return c;
} // end of putcU1

/* getcU1 FUNCTION DESCRIPTION **
SYNTAX: int getcU1(char *ch_ptr);
KEYWORDS: character, get
DESCRIPTION: Checks for a new character to arrive to the UART1 serial

port.
PARAMETER 1: ch_ptr: pointer to character
RETURN VALUE: TRUE = new character received

Asynchronous Communications
with the Cerebot MX7cK™

 page 18 of 20

 FALSE = No new character
NOTES: This function does not block for new character not ready
END DESCRIPTION **/
int getcU1(char *ch_ptr)
{
 if(!DataRdyUART1()) // wait for new char to arrive
 return FALSE; // Return new data not available flag
 else
 {
 *ch_ptr = ReadUART1();// read the char from receive buffer
 return TRUE; // Return new data available flag
 }
}// end of getcU1

/* putsU1 FUNCTION DESCRIPTION **
SYNTAX: int putsU1(const char *s);
KEYWORDS: UART, string
DESCRIPTION: Sends a NULL terminates text string to UART1 with
 CR and LF appended
PARAMETER 1: pointer to text string
RETURN VALUE: Logical TRUE
NOTES: This function will block until space is available
 in the transmit buffer
END DESCRIPTION **/
int putsU1(const char *s)
{
 putsUART1(s); // from peripheral library
 putcUART1('\r');
 putcUART1('\n');
 return 1;
} // putsU1

/* getstrU1 FUNCTION DESCRIPTION **
SYNTAX: int getstrU1(char *s, unsigned int len);
KEYWORDS: string, get, UART
DESCRIPTION: This function assembles a line of text until the number of
 characters assembled exceed the buffer length or an ASCII
 CR control character is received. This function echos each
 received character back to the UART. It also implements a
 destructive backspace. ASCII LF control characters are

filtered out. The returned string has the CR character
removed and a NULL character appended to terminate the text
string.

PARAMETER 1: s: pointer to string
PARAMETER 2: len: maximum string length
RETURN VALUE: TRUE = EOL signals the line of text is complete and ready

to process.
 FALSE = waiting for end of line

Asynchronous Communications
with the Cerebot MX7cK™

 page 19 of 20

NOTES: It is presumed that the buffer pointer or the buffer length
 does not change after the initial call asking to
 receive a new line of text. This function does not block
 for no character received. A timeout can be added to this
 function to free resource. There is no way to restart

the function after the first call until a EOL has been
received. Hence this function has denial of service
security risks.

END DESCRIPTION **/
int getstrU1(char *s, unsigned int len)
{
 static int eol = TRUE; // End of input string flag
 static unsigned int buf_len;
 static char *p1; // copy #1 of the the buffer pointer
 static char *p2; // copy #2 of the the buffer pointer
 char ch; // Received new character

 if(eol) // Initial call to function - new line
 { // Make two copies of pointer - one for
 p1 = s; // receiving characters and one for marking
 p2 = s; // the starting address of the string. The
 eol = FALSE; // second copy is needed for backspacing.
 buf_len = len - 1; // Save maximum number of received chars
 }

 if(!(getcU1(&ch))) // Check for character received
 {
 return FALSE; // Bail out if not
 }
 else
 {
 *p1 = ch; // Save new character in string buffer
 putcU1(*p1); // echo character
 switch(ch) // Test for control characters
 {
 case BACKSPACE:
 if (p1>p2)
 {
 putcU1(' '); // overwrite the last character
 putcU1(BACKSPACE);
 buf_len++;
 p1--; // back off the pointer
 }
 break;
 case '\r': // end of line, end loop
 putcU1('\n'); // add line feed
 eol = TRUE; // Mark end of line
 break;

Asynchronous Communications
with the Cerebot MX7cK™

 page 20 of 20

 case '\n': // line feed, ignore it
 break;
 default:
 p1++; // increment buffer pointer
 buf_len--; // decrement length counter
 }
 }
 if(buf_len == 0 || eol) // Check for buffer full or end of line
 {
 *p1 = '\0'; // add null terminate the string
 eol = TRUE
 return TRUE; // Set EOL flag
 }
 return FALSE; // Not EOL
} // end of getstrU1

// End of comm.c

	Project 7: Asynchronous Serial Communications
	Purpose
	Minimum Knowledge and Programming Skills
	Equipment List
	Software Resources
	Asynchronous Communications Concepts
	UART and RS-232
	RS-232 Connector Hardware

	Managing Text Strings
	UART Programming
	Project Tasks
	Project Specifications
	Project Testing
	Appendix A: Project 7 Parts Configuration
	Appendix B: PmodCLP
	Appendix C: PIC – UART C Code
	Listing 5: comm header file
	Listing 6: comm C file

