
PPWWMM uussiinngg OOuuttppuutt CCoommppaarree wwiitthh
tthhee CCeerreebboott MMXX77ccKK™™
Revision: 05 Nov 2017 (JFF)
Richard W. Wall, University of Idaho, rwall@uidaho.edu

1300 NE Henley Court, Suite 3
Pullman, WA 99163
(509) 334 6306 Voice | (509) 334 6300 Fax

page 1 of 15

Project 9: PWM using Output Compare

Project 9: PWM using Output Compare ... 1

Purpose ... 2

Minimum Knowledge and Programming Skills ... 2

Equipment List ... 2

Software Resources ... 3

References ... 3

Fundamentals of D2A .. 3

PWM as an D2A Converter.. 4

PWM Modulation .. 4

PWM Demodulation .. 6

PWM with Output Compare ... 8

Programming the Output Compare .. 9

Project Tasks ... 10

Project Specifications ... 11

Project Testing .. 12

mailto:rwall@uidaho.edu

PWM using Output Compare
with the Cerebot MX7cK™

 page 2 of 15

Appendix A: Project 9 Parts Configuration .. 13

Appendix B: Motor Controller Wiring Diagram .. 13

Appendix C: PModHB5 Half H-Bridge Drive .. 14

Appendix D: Geared DC Motor .. 14

Appendix E: PmodCLP ... 15

Purpose
The purpose of this project is to learn how to generate a proportional output using the output
compare resource on the PIC32MX processor to implement digital to analog conversion with
pulse width modulation (PWM). The proportional output will be used to control the speed of a
DC motor.

Minimum Knowledge and Programming Skills
1. Knowledge of C or C++ programming

2. Working knowledge of MPLAB IDE

3. IO pin control

4. Understanding of PWM principles

5. Understanding of Fourier Series fundamentals

6. Use of logic analyzer or oscilloscope

Equipment List
1. Cerebot MX7cK processor board with USB cable

2. Microchip MPLAB ® X IDE

3. MPLAB ® XC32 Compiler (documentation support)

4. Digilent PmodCLP Parallel Character LCD

5. Digilent H-Bridge driver PMod

6. Digilent DC Motor

7. Oscilloscope / Logic analyzer (Digilent Analog Discovery)

http://en.wikibooks.org/wiki/C_Programming/Compiling
http://ww1.microchip.com/downloads/en/DeviceDoc/52027B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61120E.pdf
https://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Fourier_analysis
http://www.ece.utep.edu/courses/web3376/Logic_Analyzer.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,396,986&Prod=CEREBOT-MX7CK
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB_IDE_8_90.zip
http://www.microchip.com/xcdemo/xcpluspromo.aspx
http://ww1.microchip.com/downloads/en/DeviceDoc/XC32-v121-ReleaseNotes.html
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,403,625&Prod=MT-MOTOR
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,842,1018&Prod=ANALOG-DISCOVERY

PWM using Output Compare
with the Cerebot MX7cK™

 page 3 of 15

Software Resources
1. Microchip XC32 C/C++ Compiler Users Guide

2. PIC32 Peripheral Libraries for MBLAB C32 Compiler

3. PIC32 Family Hardware Reference Manual Section 16 Output Compare

4. Cerebot MX7cK Board Reference Manual

5. MPLAB ® X Integrated Development Environment (IDE)\

References
1. Using PWM to Generate Analog Output

2. C Programming Reference

3. PIC32 Output Compare

Fundamentals of D2A
The information Digital IO works well for generating and detecting discrete events. But the real
world is continuous hence, for microprocessors to have value, they need to have capability to
input and output analog signals. Project 9 investigates one method that a microprocessor can
generate a varying amplitude signal. Project 10 investigates a method for sensing a time
varying signal. A digital to analog converter (DAC) converts a digital or binary value to an analog
voltage. An analog to digital converter (ADC) converts a voltage in a specified range to a binary
value that represents the magnitude of the signal.

There are several different technologies used to implement DACs. To say that a continuous
time varying signal can be generated from a sequence of binary values is an overstatement. In
reality, the output of the DAC can only output discrete voltage levels over a limited range of
voltages. Three parameters define a DAC operating characteristics: the resolution, the dynamic
range, and the DAC order. The DAC resolution is defined as the change in output level for a
change in the least significant bit of the binary input. The dynamic range of the DAC is defined
by the maximum output level minus the minimum output level. Bipolar DACs can output both
positive and negative voltages. Unipolar DACs output either positive or negative voltages. The
order of a DAC is defined by the log base 2 of the number of discrete values that the DAC can
output. For example, a 10 bit DAC can output 1024 discrete values.

The DAC performance is measured with these following parameters: conversion speed,
differential nonlinearity, integral nonlinearity total harmonic distortion plus noise, zero offset,

http://ww1.microchip.com/downloads/en/DeviceDoc/51686F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf
http://www.digilentinc.com/Data/Products/CEREBOT-MX7CK/Cerebot_MX7cK_rm.pdf
http://microchip.wikidot.com/mplab:_start
http://ww1.microchip.com/downloads/en/AppNotes/00538c.pdf
http://www.w3schools.in/c-programming-language/intro/
http://ww1.microchip.com/downloads/en/DeviceDoc/39706a.pdf
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://www.ece.uidaho.edu/ee/classes/ECE340/

PWM using Output Compare
with the Cerebot MX7cK™

 page 4 of 15

monotonicity, and missing codes. A thorough discussion on DAC performance is beyond the
scope of this project but it is obvious that better performance comes at a higher cost.

 PWM as an D2A Converter
In communications theory, modulation is used to translate the frequency spectrum of
information signals to a frequency spectrum centered around a higher fixed frequency. The
purpose of modulation is to allow multiple information signals to be simultaneously
communicated on a single medium such as wire, fiber optic cable or through the air as
electromagnetic or acoustic waves using frequency division multiplexing. When discussing
modulation, two terms frequently arise: the information or modulating signal and the carrier
signal. The carrier is a constant higher frequency that is modulated or modified by the
information or modulating signal. After transmission, the information signal must be recovered or
extracted from the carrier signal using a demodulator.

PWM Modulation
Pulse width modulation (PWM) (also referred to as pulse duration modulation or PDM) is
commonly used as a method of generating a signal with a microprocessor for two reasons: the
PWM signal is easily generated using processor timers and digital comparators, and the PWM
signal easily demodulated with little or no external circuitry. Readers who are unfamiliar with
PWM concepts are referred to one of the many web based tutorials. The bottom trace in Figure
1 is an example of a PWM signal showing that it is a constant period rectangular wave with a
varying duty cycle. The inverse of the constant PWM period is called the PWM cycle frequency
or the carrier frequency. The PWM duty cycle is the ratio of high output to total PWM period and
is expressed in percent. Hence a 50% PWM duty cycle results in a square wave.

If the modulating signal is a constant, the demodulated PWM signal is a DC level. When
working with bipolar modulating signals, the signal level must be offset such that the zero level
generates a PWM output with 50% duty cycle. The offset must be removed by the demodulator
circuit to recover the bipolar signal. Demodulation circuits are discussed in paragraphs below.

http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/Frequency-division_multiplexing
http://en.wikipedia.org/wiki/Demodulation
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://www.proaxis.com/%7Ewagnerj/PWMfil/PWM%20Filters.pdf

PWM using Output Compare
with the Cerebot MX7cK™

 page 5 of 15

Figure 1. Generation of a PWM signal from an AC source signal

As illustrated in Figure 1, the PWM carrier frequency signal is modulated by changing the duty
cycle of the carrier rectangular wave in proportion to the amplitude to the information signal. The
top trace in Figure 1 shows the information or modulating sine wave and the sawtooth wave
used by the modulator. When the modulating signal has amplitude that is higher than the
sawtooth signal, the PWM signal is high as shown in the bottom trace of Figure 1. Conversely,
the PWM output is low whenever the sawtooth signal is higher than the information signal.

Microprocessors can generate a PWM output signal using a counter and a digital comparator.
The counter synthesizes the sawtooth wave and a data stream synthesizes the modulating
wave. Many microprocessors including the PIC32 contain dedicated hardware that can generate
a PWM output with minimum software support.

As described above, PWM is a modulation scheme where the information signal is used to
modulate a carrier signal. The result of modulation translates or shifts the information signal
frequency spectrum to a spectrum that centered on the PWM cycle frequency. The PWM signal
has multiple frequency components. Spectral analysis reveals that the PWM signal has the
spectrum of the original information signal as well as frequency components at the carrier
frequency as well as harmonics of the carrier signal. The bottom trace in Figure 2 shows the
frequency spectrum of a PWM signal with a 1KHZ PWM cycle (carrier) frequency and
modulated at 65% PWM duty cycle. The amplitude of each of the frequency spikes is a function

http://en.wikipedia.org/wiki/Modulation
http://en.wikipedia.org/wiki/Frequency_spectrum

PWM using Output Compare
with the Cerebot MX7cK™

 page 6 of 15

of the percent duty cycle. The signal at zero Hz is the spectrum of the information signal. It is
recovered by low pass filtering of the PWM signal to remove the carrier frequency at 1 KHz and
the harmonics of carrier signal. One can observe the reduced amplitude spikes of the harmonics
at multiples of 1 KHz. The harmonics are the frequency components that are needed to
generate the square waves of the PWM signal and are not needed to demodulate the PWM
signal.

Figure 2. Frequency spectrum of a 1KHz PWM signal with constant 65% duty cycle.

PWM Demodulation
Demodulation is the processes that separates the information signal from carrier signal and
returns the signal to its original format. For PWM, the demodulator is an integrator implemented
with a low pass filter. If we are reconstructing a bipolar signal, then a circuit must be added to
removes the offset or uses a series capacitor to block the offset DC component.

The information signal used to modulate the PWM rectangular wave for this project is a DC
signal of different levels. Figure 3 shows the block diagram of a circuit that can be used to
demodulate the microprocessor’s PWM output to control the speed of a DC motor that will rotate
in one direction only. Since the PWM signal has only two states, on and off, the output power
can be amplified with a single transistor.

http://en.wikipedia.org/wiki/Demodulation

PWM using Output Compare
with the Cerebot MX7cK™

 page 7 of 15

µP
PWM

Output

Power
Amplifier

Low Pass Filter

PWM
Demodulator

Motor
Power Analog

Load

Figure 3. Block diagram of PWM demodulator

However, the DC motor driver circuit provided by the PmodHB5 allows control of the motor
speed by connecting the Output Enable pin to the PIC32 PWM output as well as motor direction
control by connection to another PIC32 IO pin. Figure 4 shows a conceptual block diagram of an
interface of an H bridge driver such as the PmodHB5 with the PIC32 processor and the DC
motor. The power amplifier outputs a high voltage level when the enable pin is set high and the
direction control pin is also high. When the direction pin is set low and the output enable pin is
set high, the power amplifiers outputs a low voltage level. A voltage difference across the
terminals of the DC motor causes the motor to turn. Whenever the enable pin is low, the output
from the power amplifier is high impedance.

The circuit shown in Figure 4 is one means of implementing bipolar control where the PWM
signal contains the signal magnitude and a separate binary signal indicates the sign on the
magnitude.

PIC32
Processor Power

Amplifier

Motor
Power

DC Motor
Power

Amplifier

Motor
Power

µP
PWM

Output

Motor
Direction
Control

Inverter

EN EN

DIR DIR

Figure 4. DC motor bidirectional control used in Project 9

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://en.wikipedia.org/wiki/H_bridge
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5

PWM using Output Compare
with the Cerebot MX7cK™

 page 8 of 15

For this project, the PWM output will be used to power a DC motor as shown in Appendix A.
The PmodHB5 H bridge driver shown in block diagram serves as the power amplifier. There is
no need for a low pass filter because the DC motor will respond only to the modulation signal
and reject the carrier frequency signal and its harmonics.

PWM with Output Compare
The PWM pulse width is controlled by the PIC32MX processor output compare (OC) module.
The reader may wish to review the web PIC32 PWM example as a starting point for this design.
Even though there are five PWM outputs available, we are constrained to using either Timer 2
or Timer 3 to generate the PWM cycle frequency. For Project 9, we will use Timer 2. The DC
motor is connected to JD on the Cerebot MX7cK board. This connection provides access to
output compare channel 3 (OC3) that we will use to generate the PWM output. Although the
complete programming details to set up a PWM output are provided below, there are two key
parameters that must be specified. The first, PWM_CYCLE_FREQUENCY, is the inverse of the
PWM cycle period. The value written to the Timer 2 period register, PR2, determines the PWM
frequency, as shown in Equations (1) and (2). (Note: PR2 is a PIC32 register and should
never be declared as a variable or a constant.)

PWM_CYCLE_COUNT = PBCLK / (T2_PRESCALE * PWM_CYCLE_FREQUENCY) (1)

PR2 = PWM_CYCLE_COUNT – 1 (2)

The second parameter, PWM_DUTY_CYCLE, is a value between zero and 100. The duty cycle
of the PWM output is determined by the ratio of the value written to the output compare register,
OC3RS, to the value of the Timer 2 period register, PR2, as shown in Eq. 3.

OC3RS = (PWM_DUTY_CYCLE * (PR2+1) / 100) (3)

For example, to generate a 30% PWM duty cycle output when the Timer 2 period register, PR2,
is set to 999, the value 300 must be written to the OC3RS register. Note that Eq. 3 uses only
integers in the math equation resulting in faster processor computation. Integer math always
truncates the fractional portion of the result of a divide operation. To preserve resolution,
multiply operations should be completed prior to divide operations. Use parenthesis to dictate
the order of evaluation of operations.

The resolution of the PWM output compared to an equivalent digital to analog converter (DAC)
is the inverse timer PWM_CYCLE_COUNT. The resolution relates to the smallest increment
that the output voltage can be changed. For example, if PR2 is set to 999, then the resolution of
the PWM output is one part in 1000. This is equivalent to a N-bit DAC where N =
log2(PWM_CYCLE_COUNT) rounded off to the nearest integer. Consequently, for our example,
one part in 1000 results in N equal to 10.

http://zone.ni.com/devzone/cda/ph/p/id/52
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://dubworks.blogspot.com/p/pic32mx-example-code-pwm-and-dma.html
http://en.wikipedia.org/wiki/DC_motor
http://en.wikipedia.org/wiki/DC_motor
http://en.wikipedia.org/wiki/Digital-to-analog_converter

PWM using Output Compare
with the Cerebot MX7cK™

 page 9 of 15

For a given timer input clock frequency, the higher the PWM cycle frequency, the lower the DAC
resolution. Consider the case where the desired PWM cycle frequency is 20 KHz when the
PBCLK is 10 MHz and the Timer 2 prescale set to one. The PWM_CYCLE_COUNT value
equals (10E6/20E3) resulting in PR2 being set to the value of 499. A PWM_CYCLE_COUNT of
500 is approximately equivalent to a 9 bit DAC (29 = 512).

Appendix A shows a block diagram of the equipment used in Project 9. Appendix B provides
the pin connections between the Pmod HB5 and the Cerebot MX7cK. The EN (enable) pin is
the PWM input to the Pmod HB5 motor driver circuit. Whenever the EN pin is high, power is
applied to the motor. The DIR pin controls the direction of the motor and will be set to zero for
this project. The SA and SB pins should be set as inputs but will not be used until Project 10.

Programming the Output Compare
Figure 16.1 of the PIC32 Family Hardware Reference Manual shows the block diagram of the
compare output module. This diagram shows that the timer count value is compared with the
output compare register. This reference describes multiple modes of the operation output
compare module. Readers are directed to read section 16.3.3 of this reference manual. We will
not be using the fault protection capability in this project.

The PWM output using OC3 can be set up and controlled using four XC32 peripheral library
functions. The process is defined by the following steps.

1. mOC3ClearIntFlag(); // Clear output compare interrupt flag (not using this interrupt)
2. OpenTimer2(Set_up_bits, PR2_value); where PR2_value is the period register value

computed for the PWM cycle frequency. Initialize Timer 2 to generate an interrupt at the
rate of the PWM cycle using the programming concepts provided in Project 5. In the
Timer 2 ISR, toggle the LEDA bit for timing instrumentation.

3. OpenOCx(OC_configure_bits, nOCxRS, nOCxR); where nOCxRS is the initial value
written to the OCxRS register and nOCxR is the initial value written to the OCxR
register. “x” designates the specific OC register being configured in the range of 1
through 5. Refer to the Section 13 of the C32 Peripheral Library Guide for option details.

a. OC_configure_bits (bits are inclusive):
i. OC_ON //Enables the Output compare processor resource
ii. OC_TIMER_MODE16 // Timer uses 16 bit mode
iii. OC_TIMER2_SRC // Selects Timer 2 as input timer
iv. OC_PWM_FAULT_PIN_DISABLE // set so the fault pin is not used

b. nOC3R – This is a constant or a variable that specifies the initial PWM compare
value. This is set to the initial PWM duty cycle setting.

c. nOC3RS – This is a constant or a variable that specifies the next PWM compare
value. This should be set to the same value as nOC3R.

d. The range of values for nOC3RS and nOC3R is 0 to PR2+1. PR2 is specified in
step 2. If these parameters are set to a value greater than the PRx, the PWM
output will be set to a constant high (100% duty cycle).

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://ww1.microchip.com/downloads/en/DeviceDoc/61111E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/32bitPeripheralLibraryGuide.pdf

PWM using Output Compare
with the Cerebot MX7cK™

 page 10 of 15

4. After initialization, the last function, “SetDCOC3PWM(nOC3RS)”, can be used to change
the PWM duty cycle at any time while code is executing.

For this project, the DC motor driver module is connected to Cerebot MX7cK PmoD jack, JD. JD
pin 7 is connected to the PIC32 (PORTD) RD1 IO pin and controls the HB5 PMod DIR signal
that sets the direction that the motor rotates. RD1 should be configured as a digital output and
cleared. The PWM output is on JD pin 8 that is connected to the PIC32 Output Compare 3
(OC3). Hence, we will use the instruction “OpenOC3(OC_configure_bits, nOC3RS, nOC3R);”
to initialize the PWM.

JD pins 9 and 10 are the tachometer inputs. Although these pins will not be used until Project
10, RD3 and RD12 should be initialized as digital inputs.

Project Tasks
The objective of this project is to implement an open-loop motor speed control. Open loop
control is similar to you driving your car down the highway with the accelerator at a fixed
position. The car speed will vary depending on the grade of the highway. Similarly, the speed of
a DC motor is a function of the DC voltage and the mechanical load. The motor speed will
decrease as the mechanical load increases if the applied voltage remains fixed. For this project,
the motor speed control will be set to the four fixed PWM duty cycle values shown in Table I.
These duty cycle values are selected using the Cerebot MX7cK BTN1 and BTN2 push buttons.
The percentage PWM duty cycle will be displayed on line 1 of the LCD. Specifically, the project
tasks are as follows:

1. Write and verify the C code to complete the button control and LCD display design
specified below.

2. Capture the four logic analyzer screen captures for the PWM for the four settings
specified in Table I

3. Capture the LEDA, LEDB and PWM EN signals to demonstrate that the PWM output
and Timer 2 interrupts continue to function while the CN interrupt is being served.

Table I. Button controlled PWM

BTN2 BTN1 PWM
OFF OFF 40%
OFF ON 65%
ON OFF 80%
ON ON 95%

PWM using Output Compare
with the Cerebot MX7cK™

 page 11 of 15

Project Specifications
1. Setup the hardware as shown in Figure 6 of Appendix A.

a. Be careful to observe the polarity of the 10V power connection to the Pmod HB5
motor driver circuit as shown in Figure 8 of Appendix C.

b. Attach the DC motor pictured in Figure 9 of Appendix D to the Pmod HB5 motor
driver.

c. Connect the PmodCLP to the Cerebot MX7cK JC and JD. (Refer to Project 6)
d. Adjust the motor power supply for 10VDC.

2. Set the PWM output as a function of the states of buttons BTN1 and BTN2 as specified
in Table I.

3. Detect button uses the change-notice interrupt similar to the Project 5 implementation.
The CN interrupt is to use a 20 ms software delay for switch debounce.

4. Toggle LEDA in the Timer 2 ISR every millisecond to indicate that the PWM cycle period
is 1 ms. This results in a 500 Hz square wave at probe point LEDA.

5. Writes the PWM percent duty cycle to line 1 of the LCD whenever the buttons change
the PWM duty cycle as per Table I.

6. The following are the required functions and descriptions of operations:
a. “main”

i. Calls application initialization
1. Configure Cerebot MX7cK board BTN1 and BTN2 as inputs

2. Configure PmodSTEP LEDA through LEDD as outputs

3. Configure Timer 2 to generate an interrupt each millisecond.

Group priority level 2 and subgroup priority level 0.

4. Configure the PWM output channel as follows
a. Use output compare 3 (OC3)
b. Uses Timer 2 for the time base for the output compare
c. PWM cycle frequency of 1000 Hz

5. Initialize a CN interrupt for button status detection at group priority
level 1 and the subgroup priority level 0.

6. LCD initialization with a function added to position the LCD cursor
at any position. (Refer to Project 6)

ii. Executes a while(1); loop that does nothing

b. Button Detect ISR (refer to Project 5)
i. Sets LEDB on entry and clears LEDB on exit
ii. Remove button contact bounce with 20ms software delay
iii. Reads button state
iv. Decodes buttons and sets PWM in accordance with Table I
v. Sets the motor PWM
vi. Updates only line 1 of the LCD reporting the percent PWM duty cycle

using the format: PWM = ##%
vii. Clears CN interrupt flag

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,503&Prod=PMOD-HB5

PWM using Output Compare
with the Cerebot MX7cK™

 page 12 of 15

c. Timer2 ISR

i. Toggles LEDA
ii. Clears T2 interrupt flag

Project Testing
As shown in the connection diagram shown in Appendix B, the PWM output on the OC3 output
pin is connected to the motor enable (EN) pin. After developing the program that meets the
project specifications, connect the logic probe to the EN pin (JD pin 8). As shown in Figure 5,
verify the PWM output for the four settings listed in Table I. Also verify that the PWM cycle time
is 1ms by connecting a logic probe to the LEDA output pin. Connect LEDB pin to the second
logic analyzer probe to observe the operation of the PWM when a button is pressed to change
the motor speed as shown in Figure 5.

Figure 5. PWM EN signal for 33% duty cycle, Timer 2 Interrupt (LEDA) , and CN interrupt in-
progress (LEDB)

PWM using Output Compare
with the Cerebot MX7cK™

 page 13 of 15

Appendix A: Project 9 Parts Configuration

2X16
Character

LCD
PMCLP
PMod

PC
MPLAB

IDE

Cerebot PIC32
MX7ck

Pmod
JD7:12

PmodHB5
H Bridge

Driver

PMP Data Bus - JB

PMP Ctrl Bus – JC
Pins 7, 8, and 9

RB2:10 – JA
(5V

Operation)

DEBUG USB
(5V PWR)

Push
Buttons
BTN1 &
BTN2

PG.6
PG.7

Test Point Header

PmodTPH

10VDC

DC Motor
with

Tachometer

PmodSTEP
LED and

Test Points

Figure 6. Block diagram of the equipment used in Project 9.

Appendix B: Motor Controller Wiring Diagram

HB5
DIR

EN
1

2

VCC

GND

G
N

D

+1
0V

Power Supply

6

5

SA

SB
3

4

JD7

JD8

JD9

JD10

OC2/RD1

OC3/RD2

OC4/RD3
IC5/RD12

PIC32MX7

M-

M+

VCC

GND

SA IN

SB IN

D
C

 M
ot

or
 &

Ta

ch
om

et
er

JD11

JD12VCC

GND

Figure 7. Motor connection diagram

PWM using Output Compare
with the Cerebot MX7cK™

 page 14 of 15

Appendix C: PModHB5 Half H-Bridge Drive

- +
10VDC

JD
 P

m
od

C

on
ne

ct
or

D
C

 M
ot

or

Digilent PModHB5

PWM EN Pin

Figure 8. PmodHB5 instrumentation connections

Appendix D: Geared DC Motor

Geared DC Motor with
Tachometer

Figure 9. Digilent DC Motor

PWM using Output Compare
with the Cerebot MX7cK™

 page 15 of 15

Appendix E: PmodCLP

R
S

EN
A

B
LER
/W

Figure 10. PmodCLP Character LCD pin identification

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,401,609&Prod=PMOD-CLP
http://www.digilentinc.com/Data/Products/PMOD-CLP/PmodCLP_rm_RevA.pdf

	Project 9: PWM using Output Compare
	Purpose
	Minimum Knowledge and Programming Skills
	Equipment List
	Software Resources
	References
	Fundamentals of D2A
	PWM as an D2A Converter
	PWM Modulation
	PWM Demodulation
	PWM with Output Compare
	Programming the Output Compare
	Project Tasks
	Project Specifications
	Project Testing

	Appendix A: Project 9 Parts Configuration
	Appendix B: Motor Controller Wiring Diagram
	Appendix C: PModHB5 Half H-Bridge Drive
	Appendix D: Geared DC Motor
	Appendix E: PmodCLP

