
Asynchronous FIFOs



Pointer Exchange

• Each side needs to know what memory address the other is pointing 
to in order to determine Full (write domain) or Empty (read domain)

• These pointers could be exchanged using a handshake, but that would 
be required on every exchange and have a large performance impact

• Instead, Gray pointers are exchanged
• Parallel, 2 flip-flop synchronizers may then be used, since only one bit 

will change for any pointer update





Gray Code Counters

• There is no way to count in Gray code, so the method presented in 
class used a binary adder and conversion circuits to convert the 
binary code to Gray code and then back to binary for incrementing

• Both conversions require approximately n XOR2 gates for an n-bit 
pointer

• The conversion from binary to Gray can be done in parallel, but the 
other must be done serially, increasing the propagation delay







--- -- ---------�� 

' 

C 

----------------- ��



Full or Empty?!?!

• As with binary pointers, it was suggested to use an augmented Gray 
code pointer, with one extra bit than needed to address the memory

• However, unlike binary pointers, we can’t simply compare the msb
• Instead, the approach presented in class is to first convert the 

augmented pointer to the memory address
• If the two sides are accessing the same memory address, then the 

msb of the augmented pointers can be used to determine Full or 
Empty












	async_fifo
	Asynchronous FIFOs
	Pointer Exchange
	Gray Code Counters
	Full or Empty?!?!

	async_fifo_pics



