Homework 3: Doom by Deleterious Drive?

Mathematical Genetics
Fall 2019

Consider a diploid locus with alleles D and d. Suppose that D causes meiotic drive such that a fraction $\frac{1}{2} + \delta$ of gametes produced by a heterozygote Dd parent are D and $\frac{1}{2} - \delta$ are d. The parameter δ measures the segregation distortion caused by D.

Let p be the frequency of D and $q = 1 - p$ the frequency of d among newly formed zygotes, which we assume are formed via random union of the gametes produced by surviving parents. That is, the genotype frequencies of DD, Dd, and dd are, respectively, $P_{DD} = p^2$, $P_{Dd} = 2pq$, and $P_{dd} = q^2$.

Assume that D is a deleterious recessive such that DD homozygotes have relative fitness $1 - s$, with selection coefficient $s > 0$ whereas both Dd and dd genotypes have relative fitness 1.

A. Explain why the respective genotype frequencies P^*_DD and P^*_Dd of DD and Dd among the parents surviving selection are

\[
P^*_DD = \frac{p^2(1 - s)}{\bar{w}}
\]
\[
P^*_Dd = \frac{2pq}{\bar{w}}
\]

where the mean relative fitness is

\[\bar{w} = 1 - p^2s.\] (1)

B. Use part A to show that the frequency of D among the gametes produced by the parents is

\[\hat{p}^* = \frac{p(1 - ps + q2\delta)}{1 - p^2s}\]

C. The next generation is formed by random mating with allele frequencies \hat{p}^* and $\hat{q}^* = 1 - \hat{p}^*$ so the resulting offspring are in Hardy-Weinberg proportions with frequencies $p' = \hat{p}^*$ and $q' = \hat{q}^*$ of D and d, respectively. Use part B to show that the per generation rate of evolution of this recessive deleterious drive allele is

\[\Delta p = p' - p = \frac{pq(2\delta - ps)}{1 - p^2s}\]

D. Use part C to argue that \hat{p}, the non-zero equilibrium frequency of D, is

\[\hat{p} = \frac{2\delta}{s}\] (2)
Why does (2) only make sense if $s \geq 2\delta$ and what does this condition mean biologically? What is the equilibrium frequency if $s < 2\delta$? Explain.

E. Using equation (2), show that the mean relative fitness (1) at equilibrium assuming $s \geq 2\delta$ is

$$\hat{w} = 1 - \frac{4\delta^2}{s} \tag{3}$$

Explain why the equilibrium mean fitness is $\hat{w} = 1 - s$ if $s < 2\delta$.

F. Suppose the mean absolute fitness of the population, \bar{W}, is R times the relative mean fitness (1), that is

$$\bar{W} = R\hat{w} = R(1 - p^2s)$$

where $R > 1$ is the per generation, per capita growth rate of the population before introduction of the deleterious gene drive. Assuming $s \geq 2\delta$, note that the gene drive will cause eradication if

$$\bar{W} = R \left(1 - \frac{4\delta^2}{s}\right) < 1.$$

From this show that $\delta_{\text{doom}},$ the minimum segregation distortion of a recessive deleterious gene drive required for eradication, is

$$\delta_{\text{doom}} = \frac{1}{2} \sqrt{s \frac{R - 1}{R}}.$$

Extra Credit. Does $0 < s < 2\delta$ guarantee eradication? Explain.

G. Graph δ_{doom} as a function of s for a slow-growing population ($R = 1.05$) and for a fast-growing population ($R = 2$). Compare the curves to each other and compare both to the line $\delta = s/2$ (Why?). Discuss how these results could be used in the design of a gene drive engineered for eradication.