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SMALL-WORLD MCMC AND CONVERGENCE TO

MULTI-MODAL DISTRIBUTIONS: FROM SLOW MIXING

TO FAST MIXING

By Yongtao Guan and Stephen M. Krone

Department of Mathematics, University of Idaho

We compare convergence rates of Metropolis–Hastings chains to

multi-modal target distributions when the proposal distributions can

be of “local” and “small world” type. In particular, we show that by

adding occasional long-range jumps to a given local proposal distri-

bution, one can turn a chain that is “slowly mixing” (in the com-

plexity of the problem) into a chain that is “rapidly mixing.” To do

this, we obtain spectral gap estimates via a new state decomposition

theorem and apply an isoperimetric inequality for log-concave prob-

ability measures. We discuss potential applicability of our result to

Metropolis-coupled Markov chain Monte Carlo schemes.

1. Introduction and main result. Many applications of Markov chain

Monte Carlo (MCMC) involve very large and/or complex state spaces, and

convergence rates are an important issue. A major problem in MCMC is

thus to find sampling schemes whose mixing times do not grow too rapidly

as the size or complexity of the space is increased. Guan et al. [8] used com-

puter simulations to show that such problems can be handled simply and
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2 GUAN AND KRONE

efficiently by using an idea from “small-world networks” [27] to make a slight

change in a given proposal scheme. This change amounts to augmenting a

typical local proposal distribution with low probability long-distance jumps

that effectively contract the space and lead to much faster convergence to

multi-modal target distributions. In this paper, we make rigorous compar-

isons of the convergence rates of these two types of chains on Rn. We see this

as a first step in handling other complex state spaces, with the connection

between Rn and such spaces coming through possible embedding theorems.

Let π be a multi-modal probability measure on a convex set Ω ⊆ Rn.

We wish to compare convergence rates to this measure by two different

Metropolis–Hastings chains that are characterized by their proposal distri-

butions: “local” and “small world.” From now on, we refer to these two

types of Markov chains as “local chains” and “small-world chains,” respec-

tively. Intuitively, a local proposal distribution is one that has thin tails, so

that the mean distance of a proposed move away from the current state is

small compared to the distances between modes; by a small-world proposal

we mean a mixture of a local proposal and a heavy-tailed proposal, so that

there are both small and large proposed moves away from the current state.

In a multi-modal space, a local chain will equilibrate rapidly within a

mode, but takes a long time to move from one mode to another. Hence the

entire chain converges slowly to the target distribution. However, a small

fraction of heavy-tailed proposals enables a small-world chain to move from

mode to mode much more quickly. While this reduces the efficiency of equi-

librating within a mode, it is a small price to pay and easily outperforms

purely local proposals. This is the spirit of our main results. We derive
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CONVERGENCE OF SMALL-WORLD MCMC 3

bounds on the spectral gaps for such local and small-world chains and hence

show how a small fraction of heavy-tailed proposals can turn a slowly mixing

chain into a rapidly mixing chain.

Throughout this paper, we assume the state space Ω is equipped with two

measures: a reference measure, taken to be Lebesgue measure µ, and a Borel

probability measure π which serves as the target distribution. Suppose π is

absolutely continuous with respect to µ so that it admits a density π(x):

π(B) =
∫

B
π(x)µ(dx).

The most widely used Markov chain Monte Carlo method is the Metropolis–

Hastings algorithm ([22], [9]), which we now describe briefly.

1.1. Metropolis–Hastings algorithm. A transition probability kernel P (x, dy)

corresponds to a Metropolis–Hastings Markov chain on Ω if it is of the form

(1) P (x, dy) = α(x, y) k(x, y) µ(dy) + r(x) δx(dy),

where k(x, y) is the proposal distribution and we say k(x, y) induces P (x, dy),

α(x, y) = min
(

π(y) k(y, x)
π(x) k(x, y)

, 1
)

is the acceptance probability of a proposed move, δx is the unit point mass

at x, and

r(x) =
∫
Ω

(1− α(x, y))k(x, y)µ(dy)

is the probability that the proposed move from x is rejected. It is easy to

check that the transition kernel P (x, dy) satisfies the detailed balance equa-

tion π(dx)P (x, dy) = π(dy)P (y, dx) as measures on Ω×Ω, so that P (x, dy)

is reversible with respect to π and hence has π as an invariant measure. For
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4 GUAN AND KRONE

simplicity, we consider only (spherically) symmetric proposal distributions,

k(x, y) = k(|x − y|), in which case the acceptance probability simplifies to

α(x, y) = min
(

π(y)
π(x) , 1

)
. (In typical cases for which the proposal chain is a

random walk and {x : π(x) > 0} is path connected, the Metropolis–Hastings

chain will be irreducible and hence π is the unique invariant measure.)

1.2. Geometric ergodicity and spectral gap. Let L2(π) denote the space

of (Borel) measurable, complex functions on Ω satisfying∫
Ω
|f(x)|2π(dx) < ∞.

This is a Hilbert space with inner product 〈f, g〉 =
∫
Ω f(x)g(x)π(dx) and

norm ‖f‖ = 〈f, f〉
1
2 . The Metropolis–Hastings kernel P (x, dy) induces a

contraction operator P on L2(π) given by Pf(x) =
∫
Ω f(y)P (x, dy). We say

the operator P is induced by a proposal distribution k(x, y) if the same is

true of its transition kernel. P (x, dy) being reversible with respect to π is

equivalent to the operator P being self-adjoint, i.e.,

〈Pf, g〉 = 〈f, Pg〉, f, g ∈ L2(π).

It is well known that the spectrum of P is a subset of [−1, 1]. (P being self-

adjoint implies its spectrum is real, and P (x, dy) being a transition proba-

bility kernel determines the range.)

A chain is L2(π)-geometrically ergodic if there exists γ < 1 such that

(2) ‖µ0P
n − π‖ ≤ γn‖µ0 − π‖

for any non-negative integer n and any probability measure µ0 ∈ L2(π) (i.e.,

µ0 � π with
∫
|dµ
dπ |

2dπ < ∞). Roberts and Tweedie [26] have shown that
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CONVERGENCE OF SMALL-WORLD MCMC 5

convergence in L2 implies convergence in “total variation” norm

‖µ1 − µ2‖tv = sup
A⊂Ω

|µ1(A)− µ2(A)| = 1
2

∫
Ω
|f1(x)− f2(x)| dx,

where fi(x) = dµi/dx.

Let L2
0(π) denote the orthogonal complement of the constant function 1

in L2(π):

L2
0(π) = {f ∈ L2(π) : 〈f,1〉 =

∫
Ω

f(x)π(dx) = 0}.

Clearly, as a subspace of L2(π), L2
0(π) is also a Hilbert space. Denote by

P0 the restriction of P to L2
0(π). Chan and Geyer [5] proved that, for a

geometrically ergodic chain, P0 has no point spectrum (i.e., eigenvalues) of

value ±1. In addition, it has been shown [25, 26] that for reversible Markov

chains, geometric ergodicity is equivalent to the condition

(3) ‖P0‖ ≡ sup
f∈L2

0(π),‖f‖≤1

‖P0f‖ < 1,

and any γ ∈ [‖P0‖, 1) satisfies Equation (2). The spectral gap of the chain

P is defined by

Gap(P ) = 1− ‖P0‖.

Thus the spectral gap provides a measure of the speed of convergence of

a Markov chain to its stationary measure. Two of the main tools for study-

ing spectral gaps in the setting of MCMC are conductance and Cheeger’s

inequality, to which we now turn.

1.3. Conductance and Cheeger’s Inequality. Let P be a Markov transi-

tion kernel that is reversible with respect to π. For A ⊆ Ω with π(A) > 0,

define

(4) hP (A) =
1

π(A)

∫
A

P (x,Ac)π(dx).
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6 GUAN AND KRONE

The quantity hP (A) can be thought of as the (probability) flow out of the

set A in one step when the Markov chain is at stationarity. Notice that

π(dx)/π(A) is the conditional stationary measure on the set A.

The conductance of the chain is defined by

(5) hP = inf
0<π(A)≤1/2

hP (A).

Note that 0 ≤ hP ≤ 1. Intuitively, small hP implies that the chain can

become stuck for a long time in some set whose measure is at most 1/2,

making it difficult for the chain to sample the rest of the distribution. As

a result, such a chain converges slowly to the stationary measure. On the

other hand, a large hP implies that the chain travels around swiftly and

hence samples different parts of the distribution efficiently. As a result, such

a chain converges rapidly. Lawler and Sokal [14] have quantified this as a

generalization of Cheeger’s inequality.

Theorem 1.1 (Cheeger’s Inequality). Let P be a reversible Markov tran-

sition kernel with invariant measure π. Then

(6)
h2

P

2
≤ Gap(P ) ≤ 2 hP .

Next, suppose that a proposal distribution k(x, y) is a mixture of two pro-

posal distributions k1(x, y) and k2(x, y). That is, k(x, y) = (1− s)k1(x, y) +

s k2(x, y), for some 0 ≤ s ≤ 1. Suppose operators P, P1, and P2 are induced

by k(x, y), k1(x, y), and k2(x, y), respectively. Clearly,

(7) P = (1− s)P1 + s P2

and, for any measurable set A, hP (A) = (1 − s) hP1(A) + s hP2(A). As an

immediate consequence we have the following lemma showing that conduc-
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CONVERGENCE OF SMALL-WORLD MCMC 7

tance acts like a concave function on transition kernels and the spectral gap

can be bounded from below by one of the components.

Lemma 1.2. Suppose a reversible chain has a mixture kernel defined by

(7). Then the conductance of the chain satisfies hP ≥ (1− s)hP1 + shP2 . In

addition,

(8) Gap(P ) ≥ 1
2
(1− s)2 h2

P1
.

Proof. From (5),

hP = inf
0<π(A)≤1/2

((1− s)hP1(A) + s hP2(A))

≥ (1− s) inf
0<π(A)≤1/2

hP1(A) + s inf
0<π(B)≤1/2

hP2(B)

= (1− s)hP1 + s hP2 ≥ (1− s)hP1 .

Combine this with Cheeger’s inequality (6) to get (8).

1.4. Definitions and main result. Let | · | be a norm on Ω ⊆ Rn and

Br(x) the n-dimensional ball centered at x with radius r. Denote by ∂Br(x)

the surface of the ball, and write π+(∂A) for the surface measure (relative

to π) of a set A in the sense that

π+(∂A) = lim inf
ε→0

π(Aε)− π(A)
ε

,

where Aε = {x ∈ Ω : ∃ a ∈ A, |x − a| < ε} is the ε-neighborhood of A,

consisting of the union of A and its “ε-boundary” Aε \A.

We say the measure π is log-concave if it has a density with respect to

µ of the form π(x) = exp(−V (x)), where V : Ω → (−∞,+∞] can be an

arbitrary convex function. Examples of log-concave distributions include uni-

form, exponential, normal, and gamma distributions. For technical reasons,
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8 GUAN AND KRONE

we restrict our attention to “smooth” log-concave functions (but see discus-

sion at the end of Section 3). We say a log-concave function exp(−V (x))

is α-smooth if for any x, y, we have |V (x) − V (y)| < α |x − y|. By Borell’s

theorem [4], the tail of π(x) is exponentially deceasing, i.e., there is a num-

ber νπ > 0, such that π+(∂Br(β)) ≤ c exp(−νπ r), for some constant c.

(This is also easy to check directly for most examples.) We will refer to νπ

as a decay exponent for π. Define the first absolute centered moment of π as

Mπ =
∫
Ω |x− β|π(dx), where β =

∫
Ω x π(dx) is the barycenter of π.

Next, we characterize the multi-modal distributions that will serve as our

target distributions. Let Ω = A1 ∪ · · · ∪Am be a partition of the state space

Ω into disjoint convex subsets. Suppose concentrated on each Ai we have

a single α-smooth log-concave probability measure πi with decay exponent

νπi and barycenter βi ∈ Ai. Let dij = |βi − βj |, i 6= j, denote the pairwise

distances between barycenters. The target distribution of interest is then

defined as a mixture of these log-concave densities:

(9) π(x) =
m∑

i=1

c πi(x)1Ai(x),

where c is a normalization constant and 1Ai is the indicator function of Ai.

When the modes have different smoothness parameters, we take α to be the

largest such.

We will refer to features of the above probability measure π that present

barriers to mixing in the local Metropolis–Hastings chain as the “complexity

of the target distribution.” These include µ(Ω) (if µ(Ω) < ∞), dij , and νπj .

In particular, we say a given chain is slowly mixing in the complexity of

π if the spectral gap of the chain is an exponentially decreasing function

of at least one of these quantities. We say a chain is rapidly mixing in the
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CONVERGENCE OF SMALL-WORLD MCMC 9

complexity of π if the spectral gap is a polynomially decreasing function of

all of these quantities.

To make our calculations concrete, we will always use for our symmetric

local proposal distribution k(x, y) a uniform distribution on an n-dimensional

ball with radius δ. Such a proposal distribution captures the essence of “local

proposals” and is easier to handle than other light-tailed proposals. We will

sometimes refer to such a local proposal scheme as a “δ-ball walk.”

Let h(x, y) be a heavy-tailed distribution, i.e., one for which the tails

decrease polynomially, instead of exponentially, on Ω. (For concreteness in

exposition, we shall restrict ourselves to Cauchy distributions when Ω is

unbounded, and uniform distributions when Ω is compact.) A small-world

proposal distribution g(x, y) is a mixture of local and heavy-tailed distribu-

tions:

(10) g(x, y) = (1− s) k(x, y) + s h(x, y),

for some s ∈ (0, 1).

We are now ready to state our main result:

Theorem 1.3. Let π be the multi-modal probability measure defined by

(9) with α-smooth log-concave modes. Let k(x, y) be the local proposal distri-

bution and let g(x, y) be defined by (10), where h(x, y) is a heavy-tailed pro-

posal. Then the local Metropolis–Hastings chain induced by k(x, y) is “slowly

mixing,” and the small-world chain induced by g(x, y) is “rapidly mixing”

in the complexity of π.

Note that the local component of the small-world chain is the same as in

the local chain.
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10 GUAN AND KRONE

The rest of the paper is organized as follows. In the next section, we prove

a new version of the state decomposition theorem of Madras and Randall

[19]. This will play an important role in proving our main theorem. On each

log-concave piece, an upper bound on conductance is easy to obtain. How-

ever, the lower bound requires some extra work. Thus we devote Section 3

to finding a lower bound through an isoperimetric inequality for log-concave

probability measures. The proof of the main theorem is given in Section 4.

In section 5, we discuss possible applications of our result to convergence

rates in Metropolis-coupled Markov chain Monte Carlo.

2. State decomposition theorem. In this section we state and prove

a new version of the state decomposition theorem of [19]. The setup of the

new theorem is the same as that of their paper, but we repeat it here for

convenience. Recall that {A1, . . . , Am} is a partition of Ω. We describe the

“pieces” of a Metropolis–Hastings chain P by defining, for each i = 1, . . . ,m,

a new Markov chain on Ai that rejects any transitions of P out of Ai. The

transition kernel PAi of the new chain is given by

(11) PAi(x,B) = P (x, B) + 1B(x)P (x, Ac
i ) for x ∈ Ai, B ⊂ Ai.

It is easy to see that PAi is reversible on the state space Ai with respect to

the measure πi, which, by definition, is the restriction of π to the set Ai.

The movement of the original chain among the “pieces” can be modeled

by a “component” Markov chain with state space {1, . . . ,m} and transition

probabilities:

(12) PH(i, j) =
1

2 π(Ai)

∫
Ai

P (x, Aj)π(dx), for i 6= j,
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CONVERGENCE OF SMALL-WORLD MCMC 11

and PH(i, i) = 1−
∑

j 6=i PH(i, j). This definition is quite similar to the defini-

tion of the quantity hP (A) except for the 2 in the denominator. The reason

for this factor will become clear as we progress.

Our theorem is more or less a direct application of the following lemma,

which is due to Caracciolo, Pelissetto, and Sokal, and was recorded, together

with its proof, in [19] as Theorem A.1.

Lemma 2.1 (Caracciolo, Pelissetto, and Sokal). In the setting stated at

the beginning of this section, assume that P (x, dy) and Q(x, dy) are transi-

tion kernels that are reversible with respect to π. Assume further that Q is

nonnegative definite and let Q
1
2 denote its nonnegative square root. Then

(13) Gap(Q
1
2 PQ

1
2 ) ≥ Gap(Q)( min

i=1,...,m
Gap(PAi)),

where

Q(i, j) =
1

π(Ai)

∫
Ai

Q(x,Aj)π(dx), for i 6= j,

and Q(i, i) = 1−
∑

j 6=i Q(i, j).

Theorem 2.2 (State Decomposition Theorem). In the preceding frame-

work, as given by equations (11) and (12), we have

(14) Gap(P ) ≥ 1
2
Gap(PH)( min

i=1,...,m
Gap(PAi)).

Remark 1. The theorem says the spectral gap for the whole Metropolis–

Hastings chain can be bounded below by taking into account the mixing

speed within each mode and the mixing speed between different modes.
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12 GUAN AND KRONE

Proof of Theorem 2.2. Let Q = 1
2(I + P ), where I is the identity

kernel. Reversibility of Q with respect to π follows from the same property

for P . To see that Q is a non-negative definite (and hence can be used in

Lemma 2.1), note first that since P is a self-adjoint probability operator, its

spectrum is a subset of [−1, 1] and hence ‖P‖ ≤ 1. Thus,

〈Qf, f〉 = 〈1
2
(I + P )f, f〉 =

1
2
(〈f, f〉+ 〈Pf, f〉) ≥ 1

2
(1− ‖P‖)‖f‖2 ≥ 0.

Since Q = 1
2(I + P ), and Q

1
2 always commutes with Q, we have that Q

1
2

and P commute. It follows that

Q
1
2 PQ

1
2 = QP.

Furthermore, setting γ = ‖P0‖, we have Gap(P ) = 1 − γ and, as a simple

consequence of the spectral mapping theorem, Gap(QP ) = 1−(1/2)γ(1+γ).

Thus 2 Gap(P )−Gap(QP ) = 2(1− γ)− (1− (1/2)γ(1 + γ)) = (1− γ)(1−

γ/2) > 0, and hence

(15) Gap(P ) >
1
2
Gap(QP ) =

1
2

Gap(Q
1
2 PQ

1
2 ).

Following the definition in Lemma 2.1, we have

(16)
Q(i, j) =

∫
Ai

Q(x,Aj)π(dx)
π(Ai)

=

∫
Ai

(I(x,Aj) + P (x,Aj))π(dx)
2 π(Ai)

=

∫
Ai

P (x,Aj)π(dx)
2 π(Ai)

,

which is just PH(i, j).

Combine Equations (12), (13), and (15) to finish the proof.

The same result has been obtained in [21]. However, their proof was not

applicable in the general situation for which P is not non-negative definite.
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CONVERGENCE OF SMALL-WORLD MCMC 13

There is, of course, a resemblance between our state decomposition the-

orem and that of Madras and Randall [19]. We note that, firstly, our con-

clusion appears to be a bit stronger than theirs in that our result does not

depend on the number of overlapping “pieces”; secondly and more impor-

tantly, in the original theorem the connection between different “pieces” of

the state space is made via overlapping of the different “pieces.” Jarner and

Yuen [10] have applied the original theorem to estimate the convergence

rates of 1-dimensional local chains. Unfortunately, the original theorem is

not readily applicable to small-world chains because such chains can move

from one region to another even when the two regions are not overlapping.

On the other hand, in our theorem the connection between different “pieces”

is made via the “probability flow” from one region to another. We emphasize

that having a chain that jumps from one region to another without visiting

the valleys in between is the key to sampling a multi-modal space efficiently.

This is discussed in [8]. In particular, the combination of the Hastings ratio

and small-world proposals results in most of the accepted long-range jumps

being directly from mode to mode, and not from modes to “valleys.”

3. Lower bound for conductance. To apply the state decomposition

theorem to a multi-modal probability measure defined by (9), we need a

lower bound on the conductance (hence spectral gap) for each log-concave

piece of the distribution. For this, we use an isoperimetric inequality.

The idea of using an isoperimetric inequality for log-concave probabil-

ity measures to obtain a lower bound on the conductance of local chains is

rather straightforward and has been used by many authors, including Ap-
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plegate and Kannan [1], Kannan and Li [11], and Lovász and Vempala [17].

Isoperimetric inequalities for log-concave probability measures have been

studied by Bobkov [3] and Kannan, Lovász, and Simonovits [12]. As noted

in [3], although the result presented in [12] was for a uniform measure on

a convex set, their method in fact extends naturally to general log-concave

probability measures. The isoperimetric inequality in [12] was studied using

a “localization lemma” developed by [16] which essentially reduces integral

inequalities in an n-dimensional space to integral inequalities in a single

variable. The original form of the result, applied to uniform measures, is the

following, recorded as Theorem 5.2 in [12].

Theorem 3.1 (Kannan, Lovasz, and Simonovits). Let K be a convex set

and K = K1 ∪K2 ∪K3 a partition of K into three measurable sets such that

the distance between K1 and K2 is d(K1,K2) > 0. Let b = 1
vol(K)

∫
K x dx be

the barycenter of K and M1(K) =
∫
K |x− b| dx. Then

vol(K3)vol(K) ≥ ln 2
M1(K)

d(K1,K2)vol(K1)vol(K2).

The following is the log-concave version of the above isoperimetric in-

equality. See also [18, Theorem 2.4].

Theorem 3.2. Suppose π is a log-concave probability measure on a convex

set K. Suppose further that π has barycenter 0 and set Mπ =
∫
K |x| π(dx).

Let K = K1 ∪ K2 ∪ B be a partition of K into three measurable sets such

that the distance between K1 and K2 is d(K1,K2) > 0. Then

π(B) ≥ ln 2
Mπ

d(K1,K2) π(K1) π(K2).
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CONVERGENCE OF SMALL-WORLD MCMC 15

As remarked above, the proof of Theorem 3.1 in [12] extends to Theorem

3.2 via the “localization lemma” on log-concave probability measures [12,

Theorem 2.7].

The next lemma makes the connection between Euclidean distance be-

tween two points and the total variation distance between the one-step

Markov transition kernels starting from those two points. Both the idea

and the proof are borrowed from [18].

Lemma 3.3. Let K ⊂ Rn be convex and suppose u, v ∈ K satisfy |u−v| <
δ

8
√

n
, for some δ > 0. Suppose further that P (x, dy) is a Metropolis–Hastings

transition kernel induced by a δ-ball local proposal and having an α-smooth

log-concave target distribution π on K. Then

‖P (u, ·)− P (v, ·)‖tv ≤ 1− 1
2
e−α δ.

Proof. Let Bδ(u) and Bδ(v) be the balls of radius δ around u and v,

respectively. Write vol(Bδ) for their Euclidean volume and set C = Bδ(u)∩

Bδ(v). Since |u − v| < δ
8
√

n
, we have vol(C) > 1

2vol(Bδ). Since our target

distribution is an α-smooth log-concave function, the Hastings ratio is of the

form
π(y)
π(x)

= e−|V (x)−V (y)| ≥ e−α|x−y|.

Thus, for any point x ∈ C, the probability density for an accepted δ-ball

move from u to x is at least 1
vol(Bδ)e

−α δ; similarly for an accepted move

from v to x. Thus, computing the total variation distance as 1 minus the

“overlapping area,” we have

‖P (u, ·)− P (v, ·)‖tv ≤ 1− 1
vol(Bδ))

∫
C

e−α δµ(dx) < 1− 1
2
e−α δ.
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Theorem 3.4. Suppose π is an α-smooth log-concave probability mea-

sure on a convex set K. Suppose further that π has barycenter 0 and set

Mπ =
∫
K |x| π(dx). Then the conductance, hP , of the Metropolis–Hastings

chain with transition kernel P (x, dy) induced by the uniform δ-ball proposal

satisfies

hP ≥ δ e−α δ

1024
√

n Mπ
,

provided δ is small compared to 1/Mπ.

Proof of Theorem 3.4. Let K = S1∪S2, where S1 and S2 are disjoint

and measurable. We begin by proving that

(17)
∫

S1

P (x, S2) π(dx) ≥ δ e−α δ

1024
√

n Mπ
min (π(S1), π(S2)).

Now consider subsets that are “deep” inside S1 and S2, in the sense that

the Metropolis–Hastings chain is unlikely to move out of them in one step:

S′1 =
{

x ∈ S1 : P (x, S2) <
1
4
e−α δ

}

and

S′2 =
{

x ∈ S2 : P (x, S1) <
1
4
e−α δ

}
.

First consider the case π(S′1) < π(S1)/2. Then

∫
S1

P (x, S2)π(dx) ≥ 1
4
e−α δπ(S1 \ S′1) >

1
8
e−α δπ(S1),

which proves (17) provided we choose δ small enough compared to 1/Mπ.
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CONVERGENCE OF SMALL-WORLD MCMC 17

So we can assume that π(S′1) ≥ π(S1)/2 and, by the same reasoning,

π(S′2) ≥ π(S2)/2. Then, for any x ∈ S′1 and y ∈ S′2,

‖P (x, ·)− P (y, ·)‖tv ≥ |P (x, S1)− P (y, S1)| ≥ 1− P (x, S2)− P (y, S1)

> 1− 1
2
e−α δ.

Applying Lemma 3.3, we obtain for any x ∈ S′1 and y ∈ S′2 that

|x− y| ≥ δ

8
√

n
,

and hence d(S′1, S
′
2) ≥ δ

8
√

n
. Set B = K \ {S′1 ∪ S′2} and apply Theorem 3.2

to the partition K = S′1 ∪ S′2 ∪B to get

π(B) ≥ δ

16
√

n Mπ
π(S′1)π(S′2) ≥

δ

64
√

n Mπ
π(S1)π(S2).

From the above inequality and the simple fact that∫
S1

P (x, S2)π(dx) =
∫

S2

P (x, S1)π(dx),

we obtain∫
S1

P (x, S2)π(dx) =
1
2

∫
S1

P (x, S2)π(dx) +
1
2

∫
S2

P (x, S1)π(dx)

≥ 1
2

∫
S1∩B

P (x, S2)π(dx) +
1
2

∫
S2∩B

P (x, S1)π(dx)

≥ 1
8
π(B)e−α δ

≥ δ e−α δ

512
√

n Mπ
π(S1) π(S2),

in agreement with (17) since π(S1) π(S2) ≥ min (π(S1), π(S2))/2.

Thus we have verified (17). To finish the proof of the theorem, just notice

that (17) implies, for every set S1 satisfying π(S1) ≤ 1/2 (and hence π(S2) ≥

1/2), that
1

π(S1)

∫
S1

P (x, S2)π(dx) ≥ δ e−α δ

1024
√

n Mπ
,
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18 GUAN AND KRONE

and hence

hP = inf
0<π(A)≤1/2

hP (A) ≥ δ e−α δ

1024
√

n Mπ
.

Remark 2. We have freedom in choosing δ. The optimal δ (for the lower

bound on conductance) is δ = 1/α. With this choice, we have

hP ≥ 1
1024 e

√
n Mπ α

.

This choice of δ makes sense. Imagine, for example, a chain starting at the

apex of a 1-dimensional two-sided exponential density e−α|x|, with α large.

A large value of δ causes proposed moves to be rejected most of the time,

resulting in slower mixing. However, a chain with small δ has a reasonably

large chance of moving away from the apex, and hence mixes faster.

In recent work, Lovász and Vempala [18] were able to demonstrate fast

convergence when sampling a log-concave distribution without the “smooth-

ness” assumption. The technique they used was, loosely, to “smooth out”

the distribution by convolving the log-concave density with a uniform distri-

bution of small variance. It is interesting to put their idea into a probability

context. Suppose X and Y are two random variables such that X has a

log-concave density, f(x). Suppose the probability density of Y is smooth

and log-concave, with E[Y ] = 0 and Var(Y ) small. Then the sum of these

two random variables, Z = X + Y , has a density, g(x), given by the con-

volution of two log-concave densities, and hence is also log-concave [15, 24].

Intuitively, these two densities f(x) and g(x) should be close to each other

if Var(Y ) is sufficiently small, and g(x) is smoother than f(x) on the scale
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of the
√

Var(Y ). Y can be interpreted as a small perturbation and this

perturbation determines, in a way, how close a chain can get to the target

distribution (if one leaves out the smoothness assumption on density of X).

The result of [18] essentially says that

(18) ||µ0P
n − π|| ≤ Mε + γn

ε ||µ0 − π||,

where µ0 is the starting measure, P is the Markov operator with target

measure π, ε is a small term that determines the accuracy of the algo-

rithm, M is a constant, and γε is the convergence rate that is determined

by ε. In fact, γε = 1 − Φ2
ε/2, where Φε is the ε-conductance defined by

supε<π(A)≤1/2

∫
A

P (x,Ac)π(dx)

π(A)−ε . They were able to show that the ε-conductance

can be bounded below by a quadratic function of ε.

In summary, if one ignores sets of small measure for a log-concave target

density, a Metropolis–Hastings chain induced by a ball walk (even without

the smoothness assumption on the target) is “geometrically ergodic.” We

would like to have directly applied this nice result, but we chose not to

for two reasons. First, the state decomposition theorem applies in the con-

text of spectral gap, while strictly speaking, Equation (18) does not give

geometric ergodicity, and hence it can not be applied directly in the state

decomposition theorem. Secondly, if one chooses to cut off small sets, then

all log-concave densities that decay faster than an exponential essentially

have compact supports, and hence are “smooth.” So the results in this sec-

tion apply. We note here, however, that both Lemma 3.3 and Theorem 3.4

are borrowed from [17] with some modifications to apply arguments on con-

ductance instead of ε-conductance.
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4. Proof of the main theorem.

4.1. A 1-D example. To gain some insight into the role of the complexity

of the target distribution and the idea behind the proof of Theorem 1.3,

we begin with a simple 1-dimensional example in which Ω is a circle with

perimeter 4L for some L � 1; i.e., the interval [−2L, 2L] with the two ends

connected. Consider a two-mode target distribution

(19) π(x) =


c ν e−ν |x| if x ∈ [−L,L],

c ν e−ν (2L−|x|) if x ∈ [−2L,−L] ∪ [L, 2L],

where c is the normalization constant. Here, we can think of L and ν as

determining the complexity of the target distribution; increasing ν makes

the modes more narrow, and increasing L increases the size of the space

and places the modes further apart. We denote by π1 the piece of π defined

on [−L,L] and by π2 the other piece. We take for the local proposal the

uniform distribution k(x, y) = 2/δ for y ∈ [x− δ, x+ δ] and 0 otherwise. Let

Pk(x, dy) be the transition kernel for the Metropolis–Hastings chain based on

this local proposal and having target distribution π. Consider the partition

A = [−L,L], Ac = [−2L,−L] ∪ [L, 2L]. Then

hPk
≤ hPk

(A) <
2

π(A)

∫ L

L−δ
Pk(x,Ac)π(dx) < 2c e−ν (L−δ).

By Cheeger’s inequality, we get

(20) Gap(Pk) ≤ 2hPk
≤ 4c e−ν (L−δ).

Thus, the spectral gap for the local Metropolis–Hastings chain decreases

exponentially in L and ν, finishing the first part of our proof for this example.
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Now consider a heavy-tailed proposal distribution h(x, y) = 1/4L, i.e.,

a uniform distribution on Ω, and the small-world proposal g(x, y) = (1 −

s)k(x, y) + s h(x, y). Let Pg,A(x, dy) be the transition kernel for the small-

world chain that is restricted to the set A. Then

Pg,A(x, dy) = (1− s)Pk,A(x, dy) + s Ph,A(x, dy),

where Pk,A and Ph,A are the restrictions to A of the kernels induced by

k(x, y) and h(x, y), respectively. By (8), we have hPg,A
≥ (1− s)hPk,A

. It is

easy to check that, for the two-sided exponential distribution, Mπ = 1/ν.

Then by Theorem 3.4,

hPk,A
≥ δ ν e−ν δ

1024
.

By Cheeger’s inequality, we have

(21) Gap(Pg,A) ≥
h2

Pg,A

2
≥ δ2 ν2e−2 ν δ

221
(1− s)2.

By symmetry, the small-world chain that is restricted to Ac has the same

lower bound for its spectral gap.

Also, by symmetry, the matrix of transition probabilities for the compo-

nent chain has the form PH =
( 1−a a

a 1−a

)
. The spectral gap for this matrix

is Gap(PH) = 2a. Now we calculate a = PH(1, 2). Set I =
∫ L
0 ν e−ν x dx.

Then π(A) = 2cI. By (12) we have

(22)

PH(1, 2) =
∫
A Pg(x,Ac)π(dx)

2 π(A)
>

1
4cI

s

4L

∫
A

∫
Ac

min(π(y), π(x))dydx

=
1

4cI

csν

L

∫ L

0

∫ L

0
min

(
e−νx, e−νy) dy dx

=
sν

4IL

∫ L

0

(∫ x

0
+
∫ L

x

)
min

(
e−νx, e−νy) dy dx

=
s

2IνL
(1− e−νL − νLe−νL).
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When νL ≥ 2, this yields PH(1, 2) > s/(4νL). Note that instead of just

using the fact that 2π(A) = 1, we chose to do the calculation the “hard”

way in order to show that the normalization constant c has no effect on the

spectral gap.

Using the state decomposition theorem to combine (21) and (22) we have

(23) Gap(Pg) >
s(1− s)2 δ2 ν e−2νδ

223L
, for νL ≥ 2.

Setting δ = 1/ν in Equation (23) leads to

Gap(Pg) >
s(1− s)2 e−2

223 νL
, for ν L ≥ 2.

For a small world chain, the lower bound on the spectral gap decreases

linearly with both L and ν. Moreover, the quantity 1/ν determines the

absolute “size” of a mode, and hence 1/(νL) reflects the relative size of each

mode. Thus, we can see how the spectral gap is influenced by the relative

size of each mode.

We have freedom in the choice of the value s. It is clear that s = 0

corresponds to a pure local chain and s = 1 corresponds to the rejection

method. Either case will make the right side of (23) equal to 0, which either

implies the lower bound is too rough, or the chain is slowly mixing. Note that,

in the lower bound, the best value for s is 1/3, which maximizes s (1− s)2.

Using a uniform distribution for h(x, y) does not make sense in an un-

bounded space. However, this is not a problem because we can always use,

say, a Cauchy distribution h(x) = 1
π

b
x2+b2

, where b is the half width at half

maximum. Some prior knowledge about the target distribution will help in

choosing b in a way that increases the lower bound on the spectral gap, and

hence the convergence rate of the corresponding small-world chain. Even in
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a bounded space, the use of a Cauchy distribution, instead of a uniform,

may increase the convergence rate in cases for which most of the mass is

accumulated in a small portion of the state space.

4.2. The general case.

Proof of Theorem 1.3. The proof of the general case is similar in

spirit to the one-dimensional case. For the first part of the theorem we

want to show that, under a local proposal, the spectral gap is exponentially

small. It is sufficient to prove that the one-step probability flow going out of

at least one mode is exponentially small. Among all m pieces of the partition,

at least one piece has measure no bigger than 1/2. Without loss of generality,

suppose it is A1. Consider any radius L > 0 such that B = BL(β1) ⊂ A1

where β1 is the barycenter of π1. Let Pk be the operator induced by a local

proposal k(x, y) given by a δ-ball walk. Then

hPk
≤ hPk

(B) =
1

π1(B)

∫
B

Pk(x,Bc) π(dx)

=
1

π1(B)

∫
B

∫
Bc

π(x) k(x, y) µ(dy) µ(dx)

≤ 1
π1(B)

∫ L

L−δ
π+

1 (∂Bu(β1)) du

≤ 1
π1(B)

∫ L

L−δ
e−ν1 u du

≤ 1
π1(B) ν1

e−ν1(L−δ)

where the second inequality follows the fact
∫
Bc k(x, y) µ(dy) ≤ 1, and we

have written ν1 for the decay exponent of π1.

By Cheeger’s inequality, we have

Gap(Pk) ≤ 2hPk
≤ 2

π1(B) ν1
e−ν1(L−δ),
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and this finishes the first part of the proof.

To prove the second part of the theorem, let Pg = (1 − s)Pk + s Ph

be the small world operator, where Pk and Ph are induced by the local

proposal k(x, y) and the heavy-tailed proposal h(x, y), respectively. Let Pg,Aj

be the restriction of the operator Pg on the set Aj , and Pk,Aj
, Ph,Aj

be the

restrictions of Pk, Ph to Aj , respectively. We have Pg,Aj = (1 − s)Pk,Aj
+

s Ph,Aj
.

By Theorem 3.4 and Mπj ≤ c/νj , we have

hPg,Aj
≥ νj δ e−νj δ

1024 c
√

n
(1− s)

and hence Cheeger’s inequality implies

(24) Gap(Pg,Aj ) ≥
ν2

j δ2 e−2 νj δ

221 c2 n
(1− s)2.

Next we want to calculate PH(i, j). Let b = maxi6=j |βi − βj | denote the

maximum of the pairwise distances between barycenters. Let the heavy-

tailed distribution be an n-dimensional Cauchy distribution with half width

b:

h(x, y) =
b

cn (|y − x|2 + b2)
n+1

2

,

where cn = Γ(n+1
2 )/π(n+1)/2 is the normalization constant.

On each partition piece Ai pick a ball Bi = BRi(βi) ⊂ Ai such that

π(Bi) = 2
3 π(Ai). Let hi = infx∈∂Bi

π(x), the “height” of the density πi

along the boundary of Bi. Let Bc
i = Ai \Bi be the complement of Bi on the
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set Ai and set cij = min(hi/hj , hj/hi). Then

I ≡
∫

Ai

∫
Aj

h(x, y) min(π(y), π(x))µ(dx) µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)min(π(y), π(x))µ(dx)µ(dy)

+
∫

Bi

∫
Bc

j

h(x, y)min(π(y), π(x))µ(dx)µ(dy)

>

∫
Bc

i

∫
Bj

h(x, y)π(x)min(
hi

hj
, 1)µ(dx)µ(dy)

+
∫

Bi

∫
Bc

j

h(x, y)π(y)min(
hj

hi
, 1)µ(dx)µ(dy)

> cij

∫
Bc

i

∫
Bj

π(x) h(x, y) µ(dx) µ(dy)

+ cij

∫
Bc

j

∫
Bi

π(y) h(x, y) µ(dy) µ(dx).

Since h(x, y) = h(|x − y|) = h(r) decreases polynomially, while both π(x)

and π(y) decrease exponentially, there exists a ball B̂w with radius wb such

that πi(B̂w) > 5
6πi(Ai), πj(B̂w) > 5

6πj(Aj), and infr∈B̂w
h(r) = ε/cn, where

ε = ε(wb) is polynomially small in wb. Note that πi(Bi) = 2
3πi(Ai) and

πi(Bj) = 2
3πj(Aj), so

(25)

I > cij

∫
Bc

i∩B̂w

∫
Bj

π(x)
ε

cn
µ(dx) µ(dy)

+ cij

∫
Bc

j∩B̂w

∫
Bi

π(y)
ε

cn
µ(dy) µ(dx)

>
cijε

cn

(
1
6
π(Ai) vol(Bj) +

1
6
π(Aj) vol(Bi)

)
.
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From (12) and (25) we get

(26)

PH(i, j) =

∫
Ai

Pg(x,Aj)π(dx)
2 π(Ai)

>
s

2 π(Ai)
I

>
s

2 π(Ai)
cijε

cn

(
1
6
π(Ai) vol(Bj) +

1
6
π(Aj) vol(Bi)

)
>

s cij ε

12 cn
vol(Bj).

For an m×m stochastic matrix A = (aij), the spectral gap can be bounded

from below [23] by

Gap(A) ≥ m min
i6=j

aij .

Combining this with (26) results in

(27) Gap(PH) ≥ sm ε

12 cn
min
i6=j

(cijvol(Bj)).

Using the state decomposition theorem to put (24) and (27) together, we

get

(28) Gap(Pg) ≥ s(1− s)2
m ε δ2

226 c2 n cn
min

j
(ν2

j e−2 νj δ) min
i6=j

(cijvol(Bj)).

Setting δ = 1/ maxj (νj) yields

Gap(Pg) > s(1− s)2
m ε

226 c2 e2 n cn
min
i6=j

(cijvol(Bj)).

Notice that vol(Bj) decreases polynomially with an increase in νj . This

concludes the proof.

Remark 3. In the proof, we essentially used a uniform distribution on a

bounded set as a heavy-tailed distribution. Notice that, loosely, ε vol(Bj)/cn

determines the relative size of mode j. In our lower bound as shown in (28),
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we have the so-called “curse of dimensionality”: cn increases exponentially

with the dimension n. Interestingly, the best value for s in the lower bound

is still 1/3.

5. Metropolis-coupled MCMC and simulated tempering.

Metropolis-coupled Markov chain Monte Carlo (MCMCMC), proposed

by Geyer [6], is in the same spirit as “simulated tempering,” which was

independently proposed by Marinari and Parisi [20]. Both are based on an

analogy with simulated annealing [13], which is an optimization algorithm

rather than a sampling scheme. It provides the useful metaphor of using some

help from a “heated” version of the problem (that makes valley crossing

easier by flattening the state space) to obtain the result in the original

“cooled” version of the problem one is interested in. Simulated annealing

uses a specific form of “heating” that is sometimes called “powering up.” If

h1(x) is the unnormalized density for the distribution of interest, ht(x) =

h1(x)1/t, for t > 1, are the heated unnormalized densities, including perhaps

t = ∞ which gives π(x) = 1. However, as noted by [7], “powering up” is not

an essential part of simulated tempering or of MCMCMC, and a different

form of heating may work better in a specific real application.

Let T = {1, . . . , t}. Both MCMCMC and simulated tempering simulate a

sequence of t distributions specified by unnormalized densities hi(x) (i ∈ T )

on the same sample space Ω, where the index i is called the “temperature,”

h1(x) is the “cold” distribution, and ht(x) is the “hot” distribution. Thus,

an MCMCMC chain lives in a product state space Ω × T such that, for a

given i ∈ T , the chain updates itself on Ω using a Metropolis–Hastings algo-

rithm. For the move between different “temperatures,” one keeps the x ∈ Ω
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and only updates the “temperature.” Specifically, suppose a(i) (i = 1, . . . , t)

is the auxiliary probability distribution for the temperatures. Then one it-

eration of the “Metropolis-Hastings” version of the simulated tempering

algorithm is as follows [7]:

1. Update x using a Metropolis-Hastings update for hi.

2. Set j = i ± 1 according to probabilities qi,j , where q1,2 = qm,m−1 = 1

and qi,i+1 = qi,i−1 = 1/2 if 1 < i < m (i.e., reflecting random walk on

different temperatures).

3. Calculate the Hastings ratio

r =
hj(x)a(j)qj,i

hi(x)a(i)qi,j

and accept the transition (set i to j) or reject it according to the

Metropolis rule: accept with probability min(r, 1).

An implicit assumption in the simulated tempering algorithm is that,

at each temperature, the proposal distribution that is used to generate a

new move x ∈ Ω is local. For the sake of simplicity and clarity, let us

assume that we have two temperatures, hot and cool, a(1) = a(2) = 1/2

and q1,2 = q2,1 = 1. Then r in step 3 becomes hj(x)/hi(x), for i, j ∈ {1, 2}.

Suppose now that the chain is at high temperature, h2(x). If x is in a mode,

then h1(x)/h2(x) is close to 1 (by powering up), so that the chain is likely

to jump back to the cool state and collect samples. On the other hand, if x

is in a valley, h1(x)/h2(x) is small, so that the chain tends to stay at the hot

temperature. When the hot chain has wandered far enough and proposes a

move back to a cool temperature, it in fact proposes a move to the cool chain

that is on average far away (as compared to the local proposal) from the
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state (in Ω) where the chain last visits the cool temperature. In summary, if

one is only interested in the samples collected in cool state (i.e., the original

distribution), then the only purpose of the hot state is to provide a far

away proposal for the cool chain. This is the exact spirit of the occasional

heavy-tailed proposals in the small-world chain.

We note, however, that although simulated tempering, or MCMCMC, is

a way to generate heavy-tailed proposals to overcome bottlenecks in Ω, the

computational cost is heavy—much heavier than for a small-world chain.

Moreover, it has been shown by Bhatnagar and Randall [2] that, in certain

situations, the transition between different temperatures can have bottle-

necks, which will slow down the frequency of “heavy-tailed” proposals, and

hence slow down the overall convergence.

Nonetheless, if one can rule out the possible bottlenecks in transitions

between the hot chain and the cool chain, our Theorem 1.3 for small-world

chains readily applies to MCMCMC, or simulated tempering, to show that

both of them are “rapidly mixing.”

Note that the different temperatures in simulated tempering in fact cor-

respond to different amounts of heaviness of the tail in a small-world chain.

Particularly, when Ω is compact, t = ∞ corresponds to the heavy-tailed pro-

posal being a uniform distribution. Therefore, we propose that a promising

scheme for using Markov chain Monte Carlo methods to solve hard problems

would be to run multiple small-world chains in parallel with different chains

having different heaviness of tails; for example, using different half-widths in

Cauchy distributions, then coupling different chains via the Hastings ratio

and Metropolis rule.
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