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Abstract. Let S be a finite set of points in the plane in general po-

sition. We investigate the number of points S must contain in order

to guarantee the existence of specified patterns of intersecting seg-

ments determined by S. Specifically we are interested in collections

of “fans” of segments sharing a single point of S in which each pair

of segments from distinct fans cross.

Let S be a finite set in general position in the plane (no three points
on a line) and let {p0, p1, p2, . . . , pk} be a subset of k + 1 distinct points
in S. We then call the collection of segments F = {p0p1, p0p2, . . . , p0pk} a
k-fan determined by S. We say that segment q0q1 crosses the k-fan F if
q0q1 intersects every segment in F at a point not in S. If F1 is a k-fan and
F2 is a j-fan so that every segment of F2 crosses F1, then we refer to the
pair (F1,F2) as a (k, j)-pair of crossing fans. We refer to a (k, 1)-pair of
crossing fans as simply a crossed k-fan. If Fi is a ki-fan for 1 ≤ i ≤ s so
that each pair (Fi,Fi′) (1 ≤ i < i′ ≤ s) is a crossing pair, then we say that
(F1,F2, . . . ,Fs) is a (k1, k2, . . . , ks)-family of crossing fans.

In this paper we will investigate the number of points required to guar-
antee that S will determine these patterns of crossing segments. In partic-
ular, for positive integers k1, k2, . . . , ks we define F (k1, k2, . . . , ks) to be the
least integer n such that any set of n points in general position in the plane
determines a (k1, k2, . . . , ks)-family of crossing fans. As a special case, note
that F (1, k) is simply the number of points needed to guarantee that S
determines a crossed k-fan.

Our motivation for these definitions comes from a very old problem: for
each positive integer n ≥ 3 let g(n) be the least integer such that every
planar set of g(n) points in general position contains the vertices of some
convex n-gon. Erdös and Szekeres introduced this problem in 1935 (see [2]
and [3]), and despite much study in subsequent years, exact values for g
are known only for n ≤ 5 along with the bound

2n−2 + 1 ≤ g(n) ≤
(

2n− 5
n− 2

)
+ 2 .
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(see [1], [4], and [8]). Morris and Soltan [5] provide an excellent survey
of related results. The segment patters we seek here are all easily found
among the diagonals of a convex m-gon for large enough m. In fact, it is

easy to see that F (k1, k2, . . . , ks) ≤ g(m) where m = s +

s∑
i=1

ki. Questions

about F (k1, k2, . . . , ks), then, may be viewed as generalized weakenings of
the Erdös and Szekeres problem. Similar generalizations were investiaged
in papers by Nielsen and Sabo [6] and Nielsen and Webb [7]. In this paper
we establish the following facts:

Theorem 1. F (1, k) ≤ 2k + 3 for every k, and equality holds for k ≤ 3.

Theorem 2. F (2, 2) ≤ 9.

Theorem 3. F (j, k) ≤
{

4j2 + 3jk − 6j + 4 if 2 ≤ j ≤ k ≤ 2j − 2
6j2 + 2jk − 6j + 4 if 2 ≤ j and k ≥ 2j − 1

1. Proving Theorem 1.

We will denote the convex hull of set S by conv(S). The following
lemma is key to our first theorem.

Lemma A. If S is a set of 2k + 2 points in general position and conv(S)
is not a triangle then S determines a crossed k-fan.

Proof. Let S be as stated in the lemma and let p1, p2, and p3 be consecutive
vertices of conv(S). Let m be the number of points of S on the side of

line
←→
p1p3 opposite p2 (see the leftmost part of Figure 1). Note that by

assumption we have m ≥ 1. Also, the number of points of S interior to the
triangle p1p2p3 must be 2k −m− 1.

Figure 1.

Now clearly if m ≥ k then S determines a k-fan (with segments sharing
p2) crossed by segment p1p3 (see the middle portion of Figure 1). But if
m < k then 2k−m− 1 ≥ k. So if v4 is a vertex of conv(S) on the opposite

side of
←→
p1p3 from p2, then S generates a k-fan of segments sharing v4 that

is crossed by segment p1p3 (see the rightmost part of Figure 1).
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Proof of Theorem 1: Let S be a set of 2k+3 points in general position. If
conv(S) is not a triangle then S determines a crossed k-fan by Lemma A, so
assume conv(S) is a triangle with vertices p0, q1, and q2. Now S \ {p0} is a
set of 2k+2 points, so again by Lemma A we may assume that conv(S\{p0})
is also a triangle. Let the vertices of conv(S \{p0}) be p1, q1, and q2. Then
since there are 2k−1 points of S interior to conv(S\{p0}), k of these points

must lie on one side of line
←→
p0p1, and thus S determines a crossed k-fan as

in Figure 2.

Figure 2.

This establishes that F (1, k) ≤ 2k + 3. The fact F (1, 1) = 5 is trivial.
We leave it to the reader to verify that the set of 8 points depicted in
Figure 3 shows that F (1, 3) = 9. Removing the innermost two points from
this set yields an example showing F (1, 2) = 7.

Figure 3.

2. Proving Theorem 2. The proof for Theorem 2 is accomplished by
establishing preliminary cases in a lemma.

Lemma B. Each of the following determines a (2,2)-pair of crossed fans:
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(i) A set of six points in convex position.

(ii) A set of seven points whose convex hull is a pentagon.

(iii) A set of seven points whose convex hull is a quadrilateral.

Proof. Part (i) is immediate. For part (ii) let S be a set of seven points
with a pentagonal convex hull. Let p and q be the points of S interior to
the convex hull. The left half of Figure 4 shows that if either p or q is in a
triangular region created by one of the hull’s diagonals, then S determines
a (2, 2)-pair of crossing fans. Thus, we may assume that both p and q lie in
the interior pentagonal region formed by the diagonals, as in the right half
of Figure 4. But S then determines a (2, 2)-pair of crossing fans as shown
in that figure.

Figure 4.

It remains only to demonstrate (iii). Let S be a set of seven points
with convex hull the quadrilateral v1v2v3v4 and with points {p1, p2, p3} ⊂ S
interior to that quadrilateral. Now the diagonals v1v3 and v2v4 divide the
interior of the hull into four triangular regions.

Case (iii-a) The left diagram in Figure 5 shows that if {p1, p2, p3} intersects
two of these regions that are not adjacent, then S determines a (2, 2)-pair of
crossing fans. So we may without loss of generality assume that {p1, p2, p3}
lies entirely on one side of one of the diagonals, say the same side of diagonal
v1v3 as v2.

Figure 5.



5

Case (iii-b) Suppose that {p1, p2, p3} is not contained in any one of the
triangular regions determined by the diagonals. In particular, we may as-
sume without loss of generality that p1 and p2 lie in the triangular region
touching side v1v2 while p3 lies in the region touching side v2v3. Viewing
the points of S radially from v3, the points p1, p2, and p3 will occur in some
order between v1 and v2. If p3 appears first in this order, the middle dia-
gram of Figure 5 demonstrates that S determines a (2, 2)-pair of crossing
fans. But if p3 is not first in this order then the right diagram in Figure 5
likewise shows the existence of a (2, 2)-pair of crossing fans.

Figure 6.

Case (iii-c) With the two above cases eliminated, we may now assume
that {p1, p2, p3} lies entirely in one of the triangular regions, say the one
touching side v1v2. We may further assume that the radial order of points
viewed from v1 is v3, p1, p2, p3, v2. If both segments p2v4 and p3v4 intersect
p1v1 then the diagram on the left half of Figure 6 shows a determined (2, 2)-
pair of crossing fans. Otherwise (if, say p2v4 misses p1v1) the right half of
that same figure demonstrates the existence of the desired pair of fans.

Proof of Theorem 2: Let S be a set of nine points in general position.
From Lemma B we see that S determines a (2, 2)-pair of crossing fans so
long as conv(S) is not a triangle. So, suppose that conv(S) is a triangle
p1q1r1. We may likewise apply Lemma B to the eight point set S \ {p1}
and reduce to the case that conv(S \ {p1}) is a triangle p2q1r1. Applying
Lemma B once more to the seven point set S \ {p1, p2}, we may assume
that conv(S \ {p1, p2}) is a triangle p3q1r1.

We could, of course, apply the same reasoning to conclude that conv(S\
{q1}) must be a triangle q2r1p1, and that conv(S \ {q1, q2}) must be a
triangle q3r1p1. Then S determines a (2, 2)-pair of crossing fans as shown
in Figure 7.
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Figure 7.

While we do not include the proof here, we have been able to use an
analysis similar to that above to prove that F (2, 3) ≤ 11.

3. Proving Theorem 3. We again begin with preliminary observations.
For the following lemmas, assume that S is a finite set of points in general
position and that conv(S) is the polygon p0p1p2 . . . ps. For each i (1 ≤ i ≤
s− 1) let di be the number of points of S on the side of

←→
p0pi opposite pi+1

and let d′i be the number of points of S on the side of
←→

p0pi+1 opposite pi.

Lemma C. Suppose j ≤ k that for some i we have di ≥ j and d′i ≥ k − 1.
Then S determines a (j, k)-pair of crossing fans.

Proof. The proof is immediate – see Figure 8.

Figure 8.



7

Lemma D. Assume that for some i the two sides of
←→
p0pi contain respec-

tively at least 2j− 1 points of S and at least 2k− 1 points of S. Then
S determines a (j, k)-pair of crossing fans.

Proof. Let pq be a vertex of conv(S) on the side of
←→
p0pi that contains at

least 2k − 1 points of S. Let R be a ray from pq such that each side of

R contains k − 1 points from S on that side of
←→
p0pi. There are two cases,

according to whether or not R meets the segment p0pi. Both cases lead to
a (j, k)-pair of crossing fans, as seen in Figure 9.

Figure 9.

Our final lemma establishes that if S determines no (j, k)-pair of crossing
fans then there is an i for which di +d′i is relatively small. This means that
a substantial portion of S is contained in the triangle p0pipi+1.

Lemma E. Suppose j ≤ k and |S| = n ≥ 4k − 1. If S does not determine
any (j, k)-pair of crossing fans then there is some i so that di and d′i
are both no more than 2j−2, and either one of them is no more than
k − 2 or both of them are no more than j − 1.

Proof. Let i be the largest index for which di ≤ 2j− 2. (Note that we may
assume i < s − 1 since otherwise d′i = 0 and the lemma holds trivially.)

Then di+1 ≥ 2j − 1, so from Lemma D (applied to
←→

p0pi+1) we see that
d′i ≤ 2k − 2. But this means di+1 ≥ n− 2k ≥ 2k − 1, so Lemma D implies
we must in fact have d′i ≤ 2j − 2. Finally, from Lemma C we see that at
least one of di or d′i must be less than k− 1 (or in the case that j = k they
may both be equal to j − 1).

Proof of Theorem 3: We will give the proof for the case that 2 ≤ j ≤ k ≤
2j − 2. The proof for the case k ≥ 2j − 1 is a simple variation.

Let S be a set of 4j2 + 3jk − 6j + 4 points in general position and
assume (to reach a contradiction) that S does not determine any (j, k)-pair
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of crossing fans. Note that since k ≤ 2j − 2 we may take the conclusion of
Lemma E to be that di +d′i ≤ 2j +k− 4 for some i. Consider the follwoing
construction.

• Begin with S0 = S and let u0 be a vertex of conv(S0).

• Having defined Sm with u0 a vertex of its convex hull (and assuming
for the moment that |Sm| ≥ 4k − 1, apply Lemma E to Sm to find
consecutive vertices vm and wm of conv(Sm) and a set Dm ⊂ Sm so
that

– uo, vm, and wm appear as vertices of conv(Sm) in counterclock-
wise order,

– |Dm| ≤ 2j + k − 4, and

– conv(Sm \Dm) is the triangle u0vmwm.

Define Sm+1 to be (Sm \Dm) \ {vm} (see Figure 10).

Figure 10.

This yields sets S = S0 ⊃ S1 ⊃ S2 ⊃ · · · and the construction must
terminate when |Sm| falls below 4k− 1 (as required by Lemma E). We will
show below that it is possible to extend the construction to S2j . There are
three notes about the construction that will be useful in the analysis.

(i) At each stage we have |Sm+1| = |S| − |{v0, v1, . . . , vm}| −
m∑
i=0

|Di|.

(ii) It is possible that wm = wm−1, but if this occurs then |Dm| ≤ 2j − 2
whereas in general we can only say |Dm| ≤ 2j + k − 4.

(iii) At each stage the polygon u0w0w1w2 . . . wmvm is convex. (As noted
in (ii), some of the vertices in this list may be repeated.)
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To show the construction of S2j is possible we must show |S2j−1| ≥
4k − 1. An important part of this verification is the following fact.

Claim: The list w0, w1, w2, . . . , w2j−1 contains no more than j distinct
points.

To see this, suppose (to reach a contradiction) that the distinct entries
in that list are (in order of increasing index) w0, wm(1), wm(2), wm(3), . . . and
that this list reaches to wm(j) (with m(j) ≤ 2j − 1). Now wm(j) is found
by applying Lemma E to Sm(j), and from (i) above we have

∣∣Sm(j)

∣∣ = |S| −
∣∣{v0, v1, . . . , vm(j)−1}

∣∣− m(j)−1∑
i=0

|Di|.

But the sum

m(j)−1∑
i=0

|Di| includes j entries bounded by 2j + k− 4 (|D0| and

|Di| for indicies i ≥ 1 for which wi 6= wi−1) as well as up to j−1 additional
entries bounded by 2j − 2 (see note (ii) above). Thus:∣∣Sm(j)

∣∣ ≥ |S| −m(j)− [j(2j + k − 4) + (j − 1)((2j − 2)]

≥ (4j2 + 3jk − 6j + 4)− (2j − 1)− (4j2 + jk − 8j + 2)

≥ 2jk + 3

> 4k

so we may indeed apply Lemma E to Sm(j). This will result in removing
the point vm(j) together with up to 2j + k − 4 points in Dm(j) so that∣∣Sm(j)+1

∣∣ ≥ (2jk+3)−1−(2j+k−4) = (2j−1)(k−1)+5 ≥ 3(k−1)+5 > 3k.

But since w0wm(1)wm(2) · · ·wm(j)vm(j)u0 is convex (note (iii) above),
it is easy to see (Figure 11) that this would result in a k-fan (formed by
joining k points in Sm(j)+1 to w0) crossing the j-fan formed by joining u0 to
the points {wm(1), wm(2), . . . , wm(j)}. This contradiction proves our claim.

Figure 11.
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Now note that |S2j−1| = |S| − |{v0, v1, . . . , v2j−2}| −
2j−2∑
i=0

|Di| and the

same argument as above for Sm(j) establishes that |S2j−1| > 4k. Thus the
construction of S2j is in fact possible.

Once again using fact (i), note that

|S2j | = |S| − |{v0, v1, . . . , v2j−1}| −
2j−1∑
i=0

|Di|

≥ (4j2 + 3jk − 6j + 4)− 2j − [j(2j + k − 4) + j(2j − 2)]

≥ 2j(k − 1) + 4

This means that there are at least 2j(k − 1) + 1 points of S2j in the
interior of the triangle u0v2j−1w2j−1. Since the 2j−1 rays from v0 through
the points {v1, v2, . . . , v2j−1} subdivide the interior of this triangle into at
most 2j regions, one such region, call it R, must contain at least k points
of S.

Finally, observe that we may partition the index set {1, 2, 3, . . . , 2j− 1}
into disjoint subsets I1 ∪ I2 where

I1 = {i : segment pv0 intersects segment u0vi for every p ∈ R} and

I2 = {i : segment pv0 intersects segment w2j−1vi for every p ∈ R}

(see Figure 12). Define F1 to be the fan formed by joining u0 to each of
the points {vi : i ∈ I1} and F2 to be the fan formed by joining w2j−1 to
each of the points {vi : i ∈ I2}. Both of these fans cross the k-fan formed
by joining k points from S∩R to v0, and one of F1 or F2 must clearly have
size at least j. This contradicts our assumption that S does not admit a
(j, k)-pair of crossing fans, and at last completes the proof of Theorem 3.

Figure 12.
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The bound in Theorem 3 is clearly subject to some improvement, though
we suspect that any such bound will be quadratic in j and k.
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