Practical statistical network analysis
(with \texttt{R} and \texttt{igraph})

Gábor Csárdi

csardi@rmki.kfki.hu

Department of Biophysics, KFKI Research Institute for Nuclear and Particle Physics of the Hungarian Academy of Sciences, Budapest, Hungary

Currently at
Department of Medical Genetics,
University of Lausanne, Lausanne, Switzerland
What is a network (or graph)?
What is a network (or graph)?
What is a network (or graph)?
What is a graph?

• Binary relation \((=\text{edges})\) between elements of a set \((=\text{vertices})\).
What is a graph?

- Binary relation (edges) between elements of a set (vertices).

- E.g.

\[
\text{vertices} = \{A, B, C, D, E\}
\]
\[
\text{edges} = (\{A, B\}, \{A, C\}, \{B, C\}, \{C, E\}).
\]
What is a graph?

- Binary relation (=edges) between elements of a set (=vertices).
- E.g.

\[
\text{vertices} = \{A, B, C, D, E\}
\]
\[
\text{edges} = (\{A, B\}, \{A, C\}, \{B, C\}, \{C, E\}).
\]

- It is “better” to draw it:
What is a graph?

• Binary relation (=edges) between elements of a set (=vertices).

• E.g.

vertices = \{A, B, C, D, E\}
edges = (\{A, B\}, \{A, C\}, \{B, C\}, \{C, E\}).

• It is “better” to draw it:
Undirected and directed graphs

- If the pairs are unordered, then the graph is undirected:

\[
\text{vertices} = \{A, B, C, D, E\} \\
\text{edges} = (\{A, B\}, \{A, C\}, \{B, C\}, \{C, E\}).
\]
Undirected and directed graphs

• If the pairs are unordered, then the graph is undirected:

vertices = \{A, B, C, D, E\}
edges = (\{A, B\}, \{A, C\}, \{B, C\}, \{C, E\}).

• Otherwise it is directed:

vertices = \{A, B, C, D, E\}
edges = ((A, B), (A, C), (B, C), (C, E)).
The igraph “package”

- For classic graph theory and network science.
- Core functionality is implemented as a C library.
- High level interfaces from **R** and **Python**.
- GNU GPL.
- http://igraph.sf.net
Vertex and edge ids

- Vertices are always numbered from zero (!).
- Numbering is continual, from 0 to $|V| - 1$.
Vertex and edge ids

- Vertices are always numbered from zero (!).
- Numbering is continual, form 0 to $|V| - 1$.
- We have to “translate” vertex names to ids:

\[
V = \{A, B, C, D, E\} \\
E = ((A, B), (A, C), (B, C), (C, E)).
\]

$A = 0, B = 1, C = 2, D = 3, E = 4$.
Vertex and edge ids

• Vertices are always numbered from zero (!).
• Numbering is continual, form 0 to \(|V| - 1\).
• We have to “translate” vertex names to ids:

\[
\begin{align*}
V &= \{A, B, C, D, E\} \\
E &= ((A, B), (A, C), (B, C), (C, E)). \\
A &= 0, B = 1, C = 2, D = 3, E = 4.
\end{align*}
\]

```r
> g <- graph( c(0,1, 0,2, 1,2, 2,4), n=5 )
```
Creating igraph graphs

• igraph objects
Creating igraph graphs

- igraph objects
- print(), summary(), is.igraph()
Creating igraph graphs

- igraph objects
- print(), summary(), is.igraph()
- is.directed(), vcount(), ecount()

```r
> g <- graph( c(0,1, 0,2, 1,2, 2,4), n=5 )
> g

Vertices: 5
Edges: 4
Directed: TRUE
Edges:

[0] 0 -> 1
[1] 0 -> 2
[3] 2 -> 4
```
> g <- graph.tree(40, 4)
> plot(g)
> plot(g, layout=layout.circle)
Visualization

```r
> g <- graph.tree(40, 4)
> plot(g)
> plot(g, layout=layout.circle)

# Force directed layouts
> plot(g, layout=layout.fruchterman.reingold)
> plot(g, layout=layout.graphopt)
> plot(g, layout=layout.kamada.kawai)
```
Visualization

```r
> g <- graph.tree(40, 4)
> plot(g)
> plot(g, layout=layout.circle)

# Force directed layouts
> plot(g, layout=layout.fruchterman.reingold)
> plot(g, layout=layout.graphopt)
> plot(g, layout=layout.kamada.kawai)

# Interactive
> tkplot(g, layout=layout.kamada.kawai)
> l <- layout=layout.kamada.kawai(g)
```
Visualization

```r
> g <- graph.tree(40, 4)
> plot(g)
> plot(g, layout=layout.circle)

# Force directed layouts
> plot(g, layout=layout.fruchterman.reingold)
> plot(g, layout=layout.graphopt)
> plot(g, layout=layout.kamada.kawai)

# Interactive
> tkplot(g, layout=layout.kamada.kawai)
> l <- layout=layout.kamada.kawai(g)

# 3D
> rglplot(g, layout=l)
```
Visualization

```r
> g <- graph.tree(40, 4)
> plot(g)
> plot(g, layout=layout.circle)

# Force directed layouts
> plot(g, layout=layout.fruchterman.reingold)
> plot(g, layout=layout.graphopt)
> plot(g, layout=layout.kamada.kawai)

# Interactive
> tkplot(g, layout=layout.kamada.kawai)
> l <- layout=layout.kamada.kawai(g)

# 3D
> rglplot(g, layout=l)

# Visual properties
> plot(g, layout=l, vertex.color="cyan")
```
Simple graphs

- igraph can handle multi-graphs:

\[
V = \{A, B, C, D, E\}
\]
\[
E = ((AB), (AB), (AC), (BC), (CE)).
\]

```r
> g <- graph( c(0,1,0,1, 0,2, 1,2, 3,4), n=5 )
> g
Vertices: 5
Edges: 5
Directed: TRUE
Edges:

[0] 0 -> 1
[1] 0 -> 1
[4] 3 -> 4
```
Simple graphs

- igraph can handle loop-edges:

\[
V = \{A, B, C, D, E\}
\]
\[
E = ((AA), (AB), (AC), (BC), (CE)).
\]

```
> g <- graph( c(0,0,0,1, 0,2, 1,2, 3,4), n=5 )
> g

Vertices: 5
Edges: 5
Directed: TRUE
Edges:

[0] 0 -> 0
[1] 0 -> 1
[4] 3 -> 4
```
Creating (more) igraph graphs

```
el <- scan("lesmis.txt")
el <- matrix(el, byrow=TRUE, nc=2)
gmis <- graph.edgelist(el, dir=FALSE)
summary(gmis)
```
Naming vertices

1. `V(gmis)$name`
2. `g <- graph.ring(10)`
3. `V(g)$name <- sample(letters, vcount(g))`
Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
> Daniel-Cecil-Eugene, Cecil-Gordon)
Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
> Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
> g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
> Cecil:Daniel-Eugene:Gordon)
Creating (more) igraph graphs

```r
# A simple undirected graph
> g <- graph.formula( Alice-Bob-Cecil-Alice,
                    Daniel-Cecil-Eugene, Cecil-Gordon )

# Another undirected graph, ":" notation
> g2 <- graph.formula( Alice-Bob:Cecil:Daniel,
                     Cecil:Daniel-Eugene:Gordon )

# A directed graph
> g3 <- graph.formula( Alice +++ Bob --- Cecil
                     +++ Daniel, Eugene +++ Gordon:Helen )
```
Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
 Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, ":" notation
> g2 <- graph.formula(Alice-Bob:Cecil:Daniel,
 Cecil:Daniel-Eugene:Gordon)

A directed graph
> g3 <- graph.formula(Alice +-+ Bob --+ Cecil
 +-- Daniel, Eugene --+ Gordon:Helen)

A graph with isolate vertices
> g4 <- graph.formula(Alice -- Bob -- Daniel,
 Cecil:Gordon, Helen)
Creating (more) igraph graphs

A simple undirected graph
> g <- graph.formula(Alice-Bob-Cecil-Alice,
 Daniel-Cecil-Eugene, Cecil-Gordon)

Another undirected graph, "::" notation
> g2 <- graph.formula(Alice-Bob::Cecil::Daniel,
 Cecil::Daniel::Eugene::Gordon)

A directed graph
> g3 <- graph.formula(Alice +-- Bob --+ Cecil
 +-- Daniel, Eugene --+ Gordon:Helen)

A graph with isolate vertices
> g4 <- graph.formula(Alice -- Bob -- Daniel,
 Cecil:Gordon, Helen)

"Arrows" can be arbitrarily long
> g5 <- graph.formula(Alice +--------+ Bob)
Vertex/Edge sets, attributes

- Assigning attributes:
 set/get.graph/vertex/edge.attribute.
Vertex/Edge sets, attributes

- Assigning attributes:
 set/get.graph/vertex/edge.attribute.
- $V(g)$ and $E(g)$.
Vertex/Edge sets, attributes

- Assigning attributes:
 `set/get.graph/vertex/edge.attribute`
- \(V(g)\) and \(E(g)\).
- Smart indexing, e.g.
 \(V(g)[\text{color=="white"}]\)
Vertex/Edge sets, attributes

- Assigning attributes:
 set/get.graph/vertex/edge.attribute.
- V(g) and E(g).
- Smart indexing, e.g.
 V(g)[color=="white"]
- Easy access of attributes:

```r
> g <- erdos.renyi.game(100, 1/100)
> V(g)$color <- sample( c("red", "black"),
  vcount(g), rep=TRUE)
> E(g)$color <- "grey"
> red <- V(g)[ color == "red" ]
> bl <- V(g)[ color == "black" ]
> E(g)[ red %--% red ]$color <- "red"
> E(g)[ bl %--% bl ]$color <- "black"
> plot(g, vertex.size=5, layout=
  layout.fruchterman.reingold)
```
Creating (even) more graphs

- E.g. from `.csv` files.

```r
> traits <- read.csv("traits.csv", head=F)
> relations <- read.csv("relations.csv", head=F)
> orgnet <- graph.data.frame(relations)

> traits[,1] <- sapply(strsplit(as.character(traits[,1]), split=" "), "}", 1)
> idx <- match(V(orgnet)$name, traits[,1])
> V(orgnet)$gender <- as.character(traits[,3][idx])
> V(orgnet)$age <- traits[,2][idx]

> igraph.par("print.vertex.attributes", TRUE)
> orgnet
```
Creating (even) more graphs

• From the web, e.g. Pajek files.

```r
> karate <- read.graph("http://cneurocvs.rmki.kfki.hu/igraph/karate.net",
                      format="pajek")

> summary(karate)
Vertices: 34
Edges: 78
Directed: FALSE
No graph attributes.
No vertex attributes.
No edge attributes.
```
Graph representation

- There is no best format, everything depends on what kind of questions one wants to ask.
Graph representation

- Adjacency matrix. Good for questions like: is 'Alice' connected to 'Bob'?

```
<table>
<thead>
<tr>
<th></th>
<th>Alice</th>
<th>Bob</th>
<th>Cecil</th>
<th>Diana</th>
<th>Esmeralda</th>
<th>Fabien</th>
<th>Gigi</th>
<th>Helen</th>
<th>Iannis</th>
<th>Jennifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bob</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cecil</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diana</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fabien</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gigi</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Helen</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Iannis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jennifer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Graph representation

- Edge list. Not really good for anything.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Bob</td>
</tr>
<tr>
<td>Bob</td>
<td>Diana</td>
</tr>
<tr>
<td>Cecil</td>
<td>Diana</td>
</tr>
<tr>
<td>Alice</td>
<td>Esmeralda</td>
</tr>
<tr>
<td>Diana</td>
<td>Esmeralda</td>
</tr>
<tr>
<td>Cecil</td>
<td>Fabien</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>Fabien</td>
</tr>
<tr>
<td>Bob</td>
<td>Gigi</td>
</tr>
<tr>
<td>Cecil</td>
<td>Gigi</td>
</tr>
<tr>
<td>Diana</td>
<td>Gigi</td>
</tr>
<tr>
<td>Alice</td>
<td>Helen</td>
</tr>
<tr>
<td>Bob</td>
<td>Helen</td>
</tr>
<tr>
<td>Diana</td>
<td>Helen</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>Helen</td>
</tr>
<tr>
<td>Fabien</td>
<td>Helen</td>
</tr>
<tr>
<td>Gigi</td>
<td>Helen</td>
</tr>
<tr>
<td>Diana</td>
<td>Iannis</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>Iannis</td>
</tr>
<tr>
<td>Alice</td>
<td>Jennifer</td>
</tr>
<tr>
<td>Helen</td>
<td>Jennifer</td>
</tr>
</tbody>
</table>
Graph representation

- Adjacency lists. GQ: who are the neighbors of 'Alice'?

<table>
<thead>
<tr>
<th></th>
<th>Bob, Esmeralda, Helen, Jennifer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>Alice, Diana, Gigi, Helen</td>
</tr>
<tr>
<td>Cecil</td>
<td>Diana, Fabien, Gigi</td>
</tr>
<tr>
<td>Diana</td>
<td>Bob, Cecil, Esmeralda, Gigi, Helen, Iannis</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>Alice, Diana, Fabien, Helen, Iannis</td>
</tr>
<tr>
<td>Fabien</td>
<td>Cecil, Esmeralda, Helen</td>
</tr>
<tr>
<td>Gigi</td>
<td>Bob, Cecil, Diana, Helen</td>
</tr>
<tr>
<td>Helen</td>
<td>Alice, Bob, Diana, Esmeralda, Fabien, Gigi, Jennifer</td>
</tr>
<tr>
<td>Iannis</td>
<td>Diana, Esmeralda</td>
</tr>
<tr>
<td>Jennifer</td>
<td>Alice, Helen</td>
</tr>
</tbody>
</table>
Graph representation

- igraph. Flat data structures, indexed edge lists. Easy to handle, good for many kind of questions.
Centrality in networks

- degree

Practical statistical network analysis – WU Wien
Centrality in networks

- closeness

\[C_v = \frac{|V| - 1}{\sum_{i \neq v} d_{vi}} \]
Centrality in networks

- betweenness

\[B_v = \sum_{i \neq j, i \neq v, j \neq v} \frac{g_{ivj}}{g_{ij}} \]
Centrality in networks

- eigenvector centrality

\[E_v = \frac{1}{\lambda} \sum_{i=1}^{V} A_{iv} E_i, \quad Ax = \lambda x \]
Centrality in networks

- page rank

\[E_v = \frac{1 - d}{|V|} + d \sum_{i=1}^{|V|} A_{iv} E_i \]
Community structure in networks

- Organizing things, clustering items to see the structure.

M. E. J. Newman, PNAS, 103, 8577–8582
Community structure in networks

- How to define what is modular?
 Many proposed definitions, here is a popular one:

\[
Q = \frac{1}{2|E|} \sum_{vw} [A_{vw} - p_{vw}] \delta(c_v, c_w).
\]
Community structure in networks

• How to define what is modular?
 Many proposed definitions, here is a popular one:

\[Q = \frac{1}{2|E|} \sum_{vw} [A_{vw} - p_{vw}] \delta(c_v, c_w). \]

• Random graph null model:

\[p_{vw} = p = \frac{1}{|V|(|V| - 1)} \]
Community structure in networks

• How to define what is modular?
 Many proposed definitions, here is a popular one:

\[Q = \frac{1}{2|E|} \sum_{vw} [A_{vw} - p_{vw}] \delta(c_v, c_w). \]

• Random graph null model:

\[p_{vw} = p = \frac{1}{|V|(|V| - 1)} \]

• Degree sequence based null model:

\[p_{vw} = \frac{k_v k_w}{2|E|} \]
Cohesive blocks

Definition 1: A collectivity is structurally cohesive to the extent that the social relations of its members hold it together.
Cohesive blocks

Definition 1: A collectivity is structurally cohesive to the extent that the social relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple independent relational paths among all pairs of members hold it together.
Cohesive blocks

Definition 1: A collectivity is structurally cohesive to the extent that the social relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple independent relational paths among all pairs of members hold it together.

• Vertex-independent paths and vertex connectivity.
Cohesive blocks

Definition 1: A collectivity is structurally cohesive to the extent that the social relations of its members hold it together.

Definition 2: A group is structurally cohesive to the extent that multiple independent relational paths among all pairs of members hold it together.

- Vertex-independent paths and vertex connectivity.
- Vertex connectivity and network flows.
Cohesive blocks
Cohesive blocks
Rapid prototyping

Weighted transitivity

\[c(i) = \frac{A_{ii}^3}{(A1A)_{ii}} \]
Rapid prototyping

Weighted transitivity

\[c(i) = \frac{A_{ii}^3}{(A1A)_{ii}} \]

\[c_w(i) = \frac{W_{ii}^3}{(WW_{\text{max}} W)_{ii}} \]
Rapid prototyping

Weighted transitivity

\[c(i) = \frac{A_{ii}^3}{(A_{11}A)_{ii}} \]

\[c_w(i) = \frac{W_{ii}^3}{(WW_{\max}W)_{ii}} \]

```r
wtrans <- function(g) {
  W <- get.adjacency(g, attr="weight")
  WM <- matrix(max(W), nrow(W), ncol(W))
  diag(WM) <- 0
  diag(W %*% WM %*% W) /
    diag(W %*% W %*% W)
}
```
Rapid prototyping

Clique percolation (Palla et al., Nature 435, 814, 2005)
... and the rest

- Cliques and independent vertex sets.
- Network flows.
- Motifs, i.e. dyad and triad census.
- Random graph generators.
- Graph isomorphism.
- Vertex similarity measures, topological sorting, spanning trees, graph components, K-cores, transitivity or clustering coefficient.
- etc.
- C-level: rich data type library.
Acknowledgement

Tamás Nepusz

All the people who contributed code, sent bug reports, suggestions

The R project

Hungarian Academy of Sciences

The OSS community in general