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Preface

Making sense of the world around us requires obtaining and analyzing data from
our environment. Several technology trends have recently collided, providing
new opportunities to apply our data analysis savvy to greater challenges than
ever before.

Computer storage capacity has increased exponentially; indeed remembering
has become so cheap that it is almost impossible to get computer systems to for-
get. Sensing devices increasingly monitor everything that can be observed: video
streams, social media interactions, and the position of anything that moves.
Cloud computing enables us to harness the power of massive numbers of ma-
chines to manipulate this data. Indeed, hundreds of computers are summoned
each time you do a Google search, scrutinizing all of your previous activity just
to decide which is the best ad to show you next.

The result of all this has been the birth of data science, a new �eld devoted
to maximizing value from vast collections of information. As a discipline, data
science sits somewhere at the intersection of statistics, computer science, and
machine learning, but it is building a distinct heft and character of its own.
This book serves as an introduction to data science, focusing on the skills and
principles needed to build systems for collecting, analyzing, and interpreting
data.

My professional experience as a researcher and instructor convinces me that
one major challenge of data science is that it is considerably more subtle than it
looks. Any student who has ever computed their grade point average (GPA) can
be said to have done rudimentary statistics, just as drawing a simple scatter plot
lets you add experience in data visualization to your resume. But meaningfully
analyzing and interpreting data requires both technical expertise and wisdom.
That so many people do these basics so badly provides my inspiration for writing
this book.

To the Reader

I have been grati�ed by the warm reception that my book The Algorithm Design
Manual [Ski08] has received since its initial publication in 1997. It has been
recognized as a unique guide to using algorithmic techniques to solve problems
that often arise in practice. The book you are holding covers very di�erent
material, but with the same motivation.



In particular, here I stress the following basic principles as fundamental to
becoming a good data scientist:

� Valuing doing the simple things right: Data science isn't rocket science.
Students and practitioners often get lost in technological space, pursuing
the most advanced machine learning methods, the newest open source
software libraries, or the glitziest visualization techniques. However, the
heart of data science lies in doing the simple things right: understanding
the application domain, cleaning and integrating relevant data sources,
and presenting your results clearly to others.

Simple doesn't mean easy, however. Indeed it takes considerable insight
and experience to ask the right questions, and sense whether you are mov-
ing toward correct answers and actionable insights. I resist the temptation
to drill deeply into clean, technical material here just because it is teach-
able. There are plenty of other books which will cover the intricacies of
machine learning algorithms or statistical hypothesis testing. My mission
here is to lay the groundwork of what really matters in analyzing data.

� Developing mathematical intuition: Data science rests on a foundation of
mathematics, particularly statistics and linear algebra. It is important to
understand this material on an intuitive level: why these concepts were
developed, how they are useful, and when they work best. I illustrate
operations in linear algebra by presenting pictures of what happens to
matrices when you manipulate them, and statistical concepts by exam-
ples and reducto ad absurdumarguments. My goal here is transplanting
intuition into the reader.

But I strive to minimize the amount of formal mathematics used in pre-
senting this material. Indeed, I will present exactly one formal proof in
this book, an incorrect proof where the associated theorem is obviously
false. The moral here is not that mathematical rigor doesn't matter, be-
cause of course it does, but that genuine rigor is impossible until after
there is comprehension.

� Think like a computer scientist, but act like a statistician: Data science
provides an umbrella linking computer scientists, statisticians, and domain
specialists. But each community has its own distinct styles of thinking and
action, which gets stamped into the souls of its members.

In this book, I emphasize approaches which come most naturally to com-
puter scientists, particularly the algorithmic manipulation of data, the use
of machine learning, and the mastery of scale. But I also seek to transmit
the core values of statistical reasoning: the need to understand the appli-
cation domain, proper appreciation of the small, the quest for signi�cance,
and a hunger for exploration.

No discipline has a monopoly on the truth. The best data scientists incor-
porate tools from multiple areas, and this book strives to be a relatively
neutral ground where rival philosophies can come to reason together.



Equally important is what you will not �nd in this book. I do not emphasize
any particular language or suite of data analysis tools. Instead, this book pro-
vides a high-level discussion of important design principles. I seek to operate at
a conceptual level more than a technical one. The goal of this manual is to get
you going in the right direction as quickly as possible, with whatever software
tools you �nd most accessible.

To the Instructor

This book covers enough material for an\Introduction to Data Science" course
at the undergraduate or early graduate student levels. I hope that the reader
has completed the equivalent of at least one programming course and has a bit
of prior exposure to probability and statistics, but more is always better than
less.

I have made a full set of lecture slides for teaching this course available online
at http://www.data-manual.com . Data resources for projects and assignments
are also available there to aid the instructor. Further, I make available online
video lectures using these slides to teach a full-semester data science course. Let
me help teach your class, through the magic of the web!

Pedagogical features of this book include:

� War Stories: To provide a better perspective on how data science tech-
niques apply to the real world, I include a collection of \war stories," or
tales from our experience with real problems. The moral of these stories is
that these methods are not just theory, but important tools to be pulled
out and used as needed.

� False Starts: Most textbooks present methods as a fait accompli, ob-
scuring the ideas involved in designing them, and the subtle reasons why
other approaches fail. The war stories illustrate my reasoning process on
certain applied problems, but I weave such coverage into the core material
as well.

� Take-Home Lessons: Highlighted \take-home" lesson boxes scattered
through each chapter emphasize the big-picture concepts to learn from
each chapter.

� Homework Problems: I provide a wide range of exercises for home-
work and self-study. Many are traditional exam-style problems, but there
are also larger-scale implementation challenges and smaller-scale inter-
view questions, reecting the questions students might encounter when
searching for a job. Degree of di�culty ratings have been assigned to all
problems.

In lieu of an answer key, a Solution Wiki has been set up, where solutions to
all even numbered problems will be solicited by crowdsourcing. A similar
system with my Algorithm Design Manual produced coherent solutions,

http://www.data-manual.com


or so I am told. As a matter of principle I refuse to look at them, so let
the buyer beware.

� Kaggle Challenges: Kaggle (www.kaggle.com) provides a forum for data
scientists to compete in, featuring challenging real-world problems on fas-
cinating data sets, and scoring to test how good your model is relative to
other submissions. The exercises for each chapter include three relevant
Kaggle challenges, to serve as a source of inspiration, self-study, and data
for other projects and investigations.

� Data Science Television: Data science remains mysterious and even
threatening to the broader public. The Quant Shopis an amateur take
on what a data science reality show should be like. Student teams tackle
a diverse array of real-world prediction problems, and try to forecast the
outcome of future events. Check it out at http://www.quant-shop.com .

A series of eight 30-minute episodes has been prepared, each built around
a particular real-world prediction problem. Challenges include pricing art
at an auction, picking the winner of the Miss Universe competition, and
forecasting when celebrities are destined to die. For each, we observe as a
student team comes to grips with the problem, and learn along with them
as they build a forecasting model. They make their predictions, and we
watch along with them to see if they are right or wrong.

In this book, The Quant Shop is used to provide concrete examples of
prediction challenges, to frame discussions of the data science modeling
pipeline from data acquisition to evaluation. I hope you �nd them fun, and
that they will encourage you to conceive and take on your own modeling
challenges.

� Chapter Notes: Finally, each tutorial chapter concludes with a brief notes
section, pointing readers to primary sources and additional references.

Dedication

My bright and loving daughters Bonnie and Abby are now full-blown teenagers,
meaning that they don't always process statistical evidence with as much alacrity
as I would I desire. I dedicate this book to them, in the hope that their analysis
skills improve to the point that they always just agree with me.

And I dedicate this book to my beautiful wife Renee, who agrees with me
even when she doesn't agree with me, and loves me beyond the support of all
creditable evidence.
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Chapter 1

What is Data Science?

The purpose of computing is insight, not numbers.

{ Richard W. Hamming

What is data science? Like any emerging �eld, it hasn't been completely de�ned
yet, but you know enough about it to be interested or else you wouldn't be
reading this book.

I think of data science as lying at the intersection of computer science, statis-
tics, and substantive application domains. From computer science comes ma-
chine learning and high-performance computing technologies for dealing with
scale. From statistics comes a long tradition of exploratory data analysis, sig-
ni�cance testing, and visualization. From application domains in business and
the sciences comes challenges worthy of battle, and evaluation standards to
assess when they have been adequately conquered.

But these are all well-established �elds. Why data science, and why now? I
see three reasons for this sudden burst of activity:

� New technology makes it possible to capture, annotate, and store vast
amounts of social media, logging, and sensor data. After you have amassed
all this data, you begin to wonder what you can do with it.

� Computing advances make it possible to analyze data in novel ways and at
ever increasing scales. Cloud computing architectures give even the little
guy access to vast power when they need it. New approaches to machine
learning have lead to amazing advances in longstanding problems, like
computer vision and natural language processing.

� Prominent technology companies (like Google and Facebook) and quan-
titative hedge funds (like Renaissance Technologies and TwoSigma) have
proven the power of modern data analytics. Success stories applying data
to such diverse areas as sports management (Moneyball [Lew04]) and elec-
tion forecasting (Nate Silver [Sil12]) have served as role models to bring
data science to a large popular audience.
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This introductory chapter has three missions. First, I will try to explain how
good data scientists think, and how this di�ers from the mindset of traditional
programmers and software developers. Second, we will look at data sets in terms
of the potential for what they can be used for, and learn to ask the broader
questions they are capable of answering. Finally, I introduce a collection of
data analysis challenges that will be used throughout this book as motivating
examples.

1.1 Computer Science, Data Science, and Real
Science

Computer scientists, by nature, don't respect data. They have traditionally
been taught that the algorithm was the thing, and that data was just meat to
be passed through a sausage grinder.

So to qualify as an e�ective data scientist, you must �rst learn to think like
a real scientist. Real scientists strive to understand the natural world, which
is a complicated and messy place. By contrast, computer scientists tend to
build their own clean and organized virtual worlds and live comfortably within
them. Scientists obsess about discovering things, while computer scientists in-
vent rather than discover.

People's mindsets strongly color how they think and act, causing misunder-
standings when we try to communicate outside our tribes. So fundamental are
these biases that we are often unaware we have them. Examples of the cultural
di�erences between computer science and real science include:

� Data vs. method centrism: Scientists are data driven, while computer
scientists are algorithm driven. Real scientists spend enormous amounts
of e�ort collecting data to answer their question of interest. They invent
fancy measuring devices, stay up all night tending to experiments, and
devote most of their thinking to how to get the data they need.

By contrast, computer scientists obsess about methods: which algorithm
is better than which other algorithm, which programming language is best
for a job, which program is better than which other program. The details
of the data set they are working on seem comparably unexciting.

� Concern about results: Real scientists care about answers. They analyze
data to discover something about how the world works. Good scientists
care about whether the results make sense, because they care about what
the answers mean.

By contrast, bad computer scientists worry about producing plausible-
looking numbers. As soon as the numbers stop looking grossly wrong,
they are presumed to be right. This is because they are personally less
invested in what can be learned from a computation, as opposed to getting
it done quickly and e�ciently.
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� Robustness: Real scientists are comfortable with the idea that data has
errors. In general, computer scientists are not. Scientists think a lot about
possible sources of bias or error in their data, and how these possible prob-
lems can e�ect the conclusions derived from them. Good programmers use
strong data-typing and parsing methodologies to guard against formatting
errors, but the concerns here are di�erent.

Becoming aware that data can have errors is empowering. Computer
scientists chant \garbage in, garbage out" as a defensive mantra to ward
o� criticism, a way to say that's not my job. Real scientists get close
enough to their data to smell it, giving it the sni� test to decide whether
it is likely to be garbage.

� Precision: Nothing is ever completely true or false in science, whileevery-
thing is either true or false in computer science or mathematics.

Generally speaking, computer scientists are happy printing oating point
numbers to as many digits as possible: 8=13 = 0:61538461538. Real
scientists will use only two signi�cant digits: 8 =13 � 0:62. Computer
scientists care what a number is, while real scientists care what it means.

Aspiring data scientists must learn to think like real scientists. Your job is
going to be to turn numbers into insight. It is important to understand the why
as much as thehow.

To be fair, it bene�ts real scientists to think like data scientists as well. New
experimental technologies enable measuring systems on vastly greater scale than
ever possible before, through technologies like full-genome sequencing in biology
and full-sky telescope surveys in astronomy. With new breadth of view comes
new levels of vision.

Traditional hypothesis-drivenscience was based on asking speci�c questions
of the world and then generating the speci�c data needed to con�rm or deny
it. This is now augmented by data-driven science, which instead focuses on
generating data on a previously unheard of scale or resolution, in the belief that
new discoveries will come as soon as one is able to look at it. Both ways of
thinking will be important to us:

� Given a problem, what available data will help us answer it?

� Given a data set, what interesting problems can we apply it to?

There is another way to capture this basic distinction between software en-
gineering and data science. It is that software developers are hired to build
systems, while data scientists are hired to produce insights.

This may be a point of contention for some developers. There exist an
important class of engineers who wrangle the massive distributed infrastructures
necessary to store and analyze, say, �nancial transaction or social media data
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on a full Facebook or Twitter-level of scale. Indeed, I will devote Chapter 12
to the distinctive challenges of big data infrastructures. These engineers are
building tools and systems to support data science, even though they may not
personally mine the data they wrangle. Do they qualify as data scientists?

This is a fair question, one I will �nesse a bit so as to maximize the poten-
tial readership of this book. But I do believe that the better such engineers
understand the full data analysis pipeline, the more likely they will be able to
build powerful tools capable of providing important insights. A major goal of
this book is providing big data engineers with the intellectual tools to think like
big data scientists.

1.2 Asking Interesting Questions from Data

Good data scientists develop an inherent curiosity about the world around them,
particularly in the associated domains and applications they are working on.
They enjoy talking shop with the people whose data they work with. They ask
them questions: What is the coolest thing you have learned about this �eld?
Why did you get interested in it? What do you hope to learn by analyzing your
data set? Data scientists always ask questions.

Good data scientists have wide-ranging interests. They read the newspaper
every day to get a broader perspective on what is exciting. They understand that
the world is an interesting place. Knowing a little something about everything
equips them to play in other people's backyards. They are brave enough to get
out of their comfort zones a bit, and driven to learn more once they get there.

Software developers are not really encouraged to ask questions, but data
scientists are. We ask questions like:

� What things might you be able to learn from a given data set?

� What do you/your people really want to know about the world?

� What will it mean to you once you �nd out?

Computer scientists traditionally do not really appreciate data. Think about
the way algorithm performance is experimentally measured. Usually the pro-
gram is run on \random data" to see how long it takes. They rarely even look
at the results of the computation, except to verify that it is correct and e�cient.
Since the \data" is meaningless, the results cannot be important. In contrast,
real data sets are a scarce resource, which required hard work and imagination
to obtain.

Becoming a data scientist requires learning to ask questions about data, so
let's practice. Each of the subsections below will introduce an interesting data
set. After you understand what kind of information is available, try to come
up with, say, �ve interesting questions you might explore/answer with access to
this data set.
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Figure 1.1: Statistical information on the performance of Babe Ruth can be
found at http://www.baseball-reference.com .

The key is thinking broadly: the answers to big, general questions often lie
buried in highly-speci�c data sets, which were by no means designed to contain
them.

1.2.1 The Baseball Encyclopedia

Baseball has long had an outsized importance in the world of data science. This
sport has been called the national pastime of the United States; indeed, French
historian Jacques Barzun observed that \Whoever wants to know the heart and
mind of America had better learn baseball." I realize that many readers are not
American, and even those that are might be completely disinterested in sports.
But stick with me for a while.

What makes baseball important to data science is its extensive statistical
record of play, dating back for well over a hundred years. Baseball is a sport of
discrete events: pitchers throw balls and batters try to hit them { that naturally
lends itself to informative statistics. Fans get immersed in these statistics as chil-
dren, building their intuition about the strengths and limitations of quantitative
analysis. Some of these children grow up to become data scientists. Indeed, the
success of Brad Pitt's statistically-minded baseball team in the movieMoneyball
remains the American public's most vivid contact with data science.

This historical baseball record is available athttp://www.baseball-reference.
com. There you will �nd complete statistical data on the performance of every
player who even stepped on the �eld. This includes summary statistics of each
season's batting, pitching, and �elding record, plus information about teams

http://www.baseball-reference.com
http://www.baseball-reference.com
http://www.baseball-reference.com
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Figure 1.2: Personal information on every major league baseball player is avail-
able at http://www.baseball-reference.com .

and awards as shown in Figure 1.1.
But more than just statistics, there is metadata on the life and careers of all

the people who have ever played major league baseball, as shown in Figure 1.2.
We get the vital statistics of each player (height, weight, handedness) and their
lifespan (when/where they were born and died). We also get salary information
(how much each player got paid every season) and transaction data (how did
they get to be the property of each team they played for).

Now, I realize that many of you do not have the slightest knowledge of or
interest in baseball. This sport is somewhat reminiscent of cricket, if that helps.
But remember that as a data scientist, it is your job to be interested in the
world around you. Think of this as chance to learn something.

So what interesting questions can you answer with this baseball data set?
Try to write down �ve questions before moving on. Don't worry, I will wait here
for you to �nish.

The most obvious types of questions to answer with this data are directly
related to baseball:

� How can we best measure an individual player's skill or value?

� How fairly do trades between teams generally work out?

� What is the general trajectory of player's performance level as they mature
and age?

� To what extent does batting performance correlate with position played?
For example, are out�elders really better hitters than in�elders?

These are interesting questions. But even more interesting are questions
about demographic and social issues. Almost 20,000 major league baseball play-

http://www.baseball-reference.com
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ers have taken the �eld over the past 150 years, providing a large, extensively-
documented cohort of men who can serve as a proxy for even larger, less well-
documented populations. Indeed, we can use this baseball player data to answer
questions like:

� Do left-handed people have shorter lifespans than right-handers? Handed-
ness is not captured in most demographic data sets, but has been diligently
assembled here. Indeed, analysis of this data set has been used to show
that right-handed people live longer than lefties [HC88]!

� How often do people return to live in the same place where they were
born? Locations of birth and death have been extensively recorded in this
data set. Further, almost all of these people played at least part of their
career far from home, thus exposing them to the wider world at a critical
time in their youth.

� Do player salaries generally reect past, present, or future performance?

� To what extent have heights and weights been increasing in the population
at large?

There are two particular themes to be aware of here. First, the identi�ers
and reference tags (i.e. the metadata) often prove more interesting in a data set
than the stu� we are supposed to care about, here the statistical record of play.

Second is the idea of astatistical proxy, where you use the data set you have
to substitute for the one you really want. The data set of your dreams likely
does not exist, or may be locked away behind a corporate wall even if it does.
A good data scientist is a pragmatist, seeing what they can do with what they
have instead of bemoaning what they cannot get their hands on.

1.2.2 The Internet Movie Database (IMDb)

Everybody loves the movies. The Internet Movie Database (IMDb) provides
crowdsourced and curated data about all aspects of the motion picture industry,
at www.imdb.com. IMDb currently contains data on over 3.3 million movies and
TV programs. For each �lm, IMDb includes its title, running time, genres, date
of release, and a full list of cast and crew. There is �nancial data about each
production, including the budget for making the �lm and how well it did at the
box o�ce.

Finally, there are extensive ratings for each �lm from viewers and critics.
This rating data consists of scores on a zero to ten stars scale, cross-tabulated
into averages by age and gender. Written reviews are often included, explaining
why a particular critic awarded a given number of stars. There are also links
between �lms: for example, identifying which other �lms have been watched
most often by viewers ofIt's a Wonderful Life .

Every actor, director, producer, and crew member associated with a �lm
merits an entry in IMDb, which now contains records on 6.5 million people.

www.imdb.com
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Figure 1.3: Representative �lm data from the Internet Movie Database.

Figure 1.4: Representative actor data from the Internet Movie Database.
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These happen to include my brother, cousin, and sister-in-law. Each actor
is linked to every �lm they appeared in, with a description of their role and
their ordering in the credits. Available data about each personality includes
birth/death dates, height, awards, and family relations.

So what kind of questions can you answer with this movie data?

Perhaps the most natural questions to ask IMDb involve identifying the
extremes of movies and actors:

� Which actors appeared in the most �lms? Earned the most money? Ap-
peared in the lowest rated �lms? Had the longest career or the shortest
lifespan?

� What was the highest rated �lm each year, or the best in each genre?
Which movies lost the most money, had the highest-powered casts, or got
the least favorable reviews.

Then there are larger-scale questions one can ask about the nature of the
motion picture business itself:

� How well does movie gross correlate with viewer ratings or awards? Do
customers instinctively ock to trash, or is virtue on the part of the cre-
ative team properly rewarded?

� How do Hollywood movies compare to Bollywood movies, in terms of rat-
ings, budget, and gross? Are American movies better received than foreign
�lms, and how does this di�er between U.S. and non-U.S. reviewers?

� What is the age distribution of actors and actresses in �lms? How much
younger is the actress playing the wife, on average, than the actor playing
the husband? Has this disparity been increasing or decreasing with time?

� Live fast, die young, and leave a good-looking corpse? Do movie stars live
longer or shorter lives than bit players, or compared to the general public?

Assuming that people working together on a �lm get to know each other,
the cast and crew data can be used to build a social network of the movie
business. What does the social network of actors look like? The Oracle of
Bacon (https://oracleofbacon.org/ ) posits Kevin Bacon as the center of
the Hollywood universe and generates the shortest path to Bacon from any
other actor. Other actors, like Samuel L. Jackson, prove even more central.

More critically, can we analyze this data to determine the probability that
someone will like a given movie? The technique ofcollaborative �ltering �nds
people who liked �lms that I also liked, and recommends other �lms that they
liked as good candidates for me. The 2007 Netix Prize was a $1,000,000 com-
petition to produce a ratings engine 10% better than the proprietary Netix
system. The ultimate winner of this prize (BellKor) used a variety of data
sources and techniques, including the analysis of links [BK07].

https://oracleofbacon.org/
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Figure 1.5: The rise and fall of data processing, as witnessed by Google Ngrams.

1.2.3 Google Ngrams

Printed books have been the primary repository of human knowledge since
Gutenberg's invention of movable type in 1439. Physical objects live somewhat
uneasily in today's digital world, but technology has a way of reducing every-
thing to data. As part of its mission to organize the world's information, Google
undertook an e�ort to scan all of the world's published books. They haven't
quite gotten there yet, but the 30 million books thus far digitized represent over
20% of all books ever published.

Google uses this data to improve search results, and provide fresh access
to out-of-print books. But perhaps the coolest product is Google Ngrams, an
amazing resource for monitoring changes in the cultural zeitgeist. It provides
the frequency with which short phrases occur in books published each year.
Each phrase must occur at least forty times in their scanned book corpus. This
eliminates obscure words and phrases, but leaves over two billion time series
available for analysis.

This rich data set shows how language use has changed over the past 200
years, and has been widely applied to cultural trend analysis [MAV+ 11]. Figure
1.5 uses this data to show how the worddata fell out of favor when thinking
about computing. Data processingwas the popular term associated with the
computing �eld during the punched card and spinning magnetic tape era of the
1950s. The Ngrams data shows that the rapid rise ofComputer Sciencedid not
eclipseData Processinguntil 1980. Even today, Data Scienceremains almost
invisible on this scale.

Check out Google Ngrams athttp://books.google.com/ngrams . I promise
you will enjoy playing with it. Compare hot dogto tofu, scienceagainst religion,
freedom to justice, and sex vs. marriage, to better understand this fantastic
telescope for looking into the past.

But once you are done playing, think of bigger things you could do if you
got your hands on this data. Assume you have access to the annual number
of references forall words/phrases published in books over the past 200 years.

http://books.google.com/ngrams
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Google makes this data freely available. So what are you going to do with it?

Observing the time series associated with particular words using the Ngrams
Viewer is fun. But more sophisticated historical trends can be captured by
aggregating multiple time series together. The following types of questions
seem particularly interesting to me:

� How has the amount of cursing changed over time? Use of the four-
letter words I am most familiar with seem to have exploded since 1960,
although it is perhaps less clear whether this reects increased cussing or
lower publication standards.

� How often do new words emerge and get popular? Do these words tend
to stay in common usage, or rapidly fade away? Can we detect when
words change meaning over time, like the transition ofgay from happy to
homosexual?

� Have standards of spelling been improving or deteriorating with time,
especially now that we have entered the era of automated spell check-
ing? Rarely-occurring words that are only one character removed from a
commonly-used word are likely candidates to be spelling errors (e.g.al-
gorithm vs. algorthm). Aggregated over many di�erent misspellings, are
such errors increasing or decreasing?

You can also use this Ngrams corpus to build a language model that captures
the meaning and usage of the words in a given language. We will discuss word
embeddings in Section 11.6.3, which are powerful tools for building language
models. Frequency counts reveal which words are most popular. The frequency
of word pairs appearing next to each other can be used to improve speech
recognition systems, helping to distinguish whether the speaker saidthat's too
bador that's to bad. These millions of books provide an ample data set to build
representative models from.

1.2.4 New York Taxi Records

Every �nancial transaction today leaves a data trail behind it. Following these
paths can lead to interesting insights.

Taxi cabs form an important part of the urban transportation network. They
roam the streets of the city looking for customers, and then drive them to their
destination for a fare proportional to the length of the trip. Each cab contains
a metering device to calculate the cost of the trip as a function of time. This
meter serves as a record keeping device, and a mechanism to ensure that the
driver charges the proper amount for each trip.

The taxi meters currently employed in New York cabs can do many things
beyond calculating fares. They act as credit card terminals, providing a way
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Figure 1.6: Representative �elds from the New York city taxi cab data: pick up
and dropo� points, distances, and fares.

for customers to pay for rides without cash. They are integrated with global
positioning systems (GPS), recording the exact location of every pickup and
drop o�. And �nally, since they are on a wireless network, these boxes can
communicate all of this data back to a central server.

The result is a database documenting every single trip by all taxi cabs in
one of the world's greatest cities, a small portion of which is shown in Figure
1.6. Because the New York Taxi and Limousine Commission is a public agency,
its non-con�dential data is available to all under the Freedom of Information
Act (FOA).

Every ride generates two records: one with data on the trip, the other with
details of the fare. Each trip is keyed to the medallion (license) of each car
coupled with the identi�er of each driver. For each trip, we get the time/date
of pickup and drop-o�, as well as the GPS coordinates (longitude and latitude)
of the starting location and destination. We do not get GPS data of the route
they traveled between these points, but to some extent that can be inferred by
the shortest path between them.

As for fare data, we get the metered cost of each trip, including tax, surcharge
and tolls. It is traditional to pay the driver a tip for service, the amount of which
is also recorded in the data.

So I'm talking to you. This taxi data is readily available, with records of
over 80 million trips over the past several years. What are you going to do with
it?

Any interesting data set can be used to answer questions on many di�erent
scales. This taxi fare data can help us better understand the transportation
industry, but also how the city works and how we could make it work even
better. Natural questions with respect to the taxi industry include:
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Figure 1.7: Which neighborhoods in New York city tip most generously? The
relatively remote outer boroughs of Brooklyn and Queens, where trips are
longest and supply is relatively scarce.

� How much money do drivers make each night, on average? What is the
distribution? Do drivers make more on sunny days or rainy days?

� Where are the best spots in the city for drivers to cruise, in order to pick
up pro�table fares? How does this vary at di�erent times of the day?

� How far do drivers travel over the course of a night's work? We can't
answer this exactly using this data set, because it does not provide GPS
data of the route traveled between fares. But we do know the last place
of drop o�, the next place of pickup, and how long it took to get between
them. Together, this should provide enough information to make a sound
estimate.

� Which drivers take their unsuspecting out-of-town passengers for a \ride,"
running up the meter on what should be a much shorter, cheaper trip?

� How much are drivers tipped, and why? Do faster drivers get tipped
better? How do tipping rates vary by neighborhood, and is it the rich
neighborhoods or poor neighborhoods which prove more generous?

I will confess we did an analysis of this, which I will further describe in
the war story of Section 9.3. We found a variety of interesting patterns
[SS15]. Figure 1.7 shows that Manhattanites are generally cheapskates
relative to large swaths of Brooklyn, Queens, and Staten Island, where
trips are longer and street cabs a rare but welcome sight.
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But the bigger questions have to do with understanding transportation in
the city. We can use the taxi travel times as a sensor to measure the level of
tra�c in the city at a �ne level. How much slower is tra�c during rush hour
than other times, and where are delays the worst? Identifying problem areas is
the �rst step to proposing solutions, by changing the timing patterns of tra�c
lights, running more buses, or creating high-occupancy only lanes.

Similarly we can use the taxi data to measure transportation ows across
the city. Where are people traveling to, at di�erent times of the day? This tells
us much more than just congestion. By looking at the taxi data, we should
be able to see tourists going from hotels to attractions, executives from fancy
neighborhoods to Wall Street, and drunks returning home from nightclubs after
a bender.

Data like this is essential to designing better transportation systems. It is
wasteful for a single rider to travel from point a to point b when there is another
rider at point a+ � who also wants to get there. Analysis of the taxi data enables
accurate simulation of a ride sharing system, so we can accurately evaluate the
demands and cost reductions of such a service.

1.3 Properties of Data

This book is about techniques for analyzing data. But what is the underlying
stu� that we will be studying? This section provides a brief taxonomy of the
properties of data, so we can better appreciate and understand what we will be
working on.

1.3.1 Structured vs. Unstructured Data

Certain data sets are nicely structured, like the tables in a database or spread-
sheet program. Others record information about the state of the world, but in
a more heterogeneous way. Perhaps it is a large text corpus with images and
links like Wikipedia, or the complicated mix of notes and test results appearing
in personal medical records.

Generally speaking, this book will focus on dealing with structured data.
Data is often represented by amatrix , where the rows of the matrix represent
distinct items or records, and the columns represent distinct properties of these
items. For example, a data set about U.S. cities might contain one row for each
city, with columns representing features like state, population, and area.

When confronted with an unstructured data source, such as a collection of
tweets from Twitter, our �rst step is generally to build a matrix to structure
it. A bag of wordsmodel will construct a matrix with a row for each tweet, and
a column for each frequently used vocabulary word. Matrix entry M [i; j ] then
denotes the number of times tweeti contains word j . Such matrix formulations
will motivate our discussion of linear algebra, in Chapter 8.
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1.3.2 Quantitative vs. Categorical Data

Quantitative data consists of numerical values, like height and weight. Such data
can be incorporated directly into algebraic formulas and mathematical models,
or displayed in conventional graphs and charts.

By contrast, categorical data consists of labels describing the properties of
the objects under investigation, like gender, hair color, and occupation. This
descriptive information can be every bit as precise and meaningful as numerical
data, but it cannot be worked with using the same techniques.

Categorical data can usually be coded numerically. For example, gender
might be represented asmale = 0 or female = 1. But things get more com-
plicated when there are more than two characters per feature, especially when
there is not an implicit order between them. We may be able to encode hair
colors as numbers by assigning each shade a distinct value like gray hair = 0,
red hair = 1, and blond hair = 2. However, we cannot really treat these val-
ues as numbers, for anything other than simple identity testing. Does it make
any sense to talk about the maximum or minimum hair color? What is the
interpretation of my hair color minus your hair color?

Most of what we do in this book will revolve around numerical data. But
keep an eye out for categorical features, and methods that work for them. Clas-
si�cation and clustering methods can be thought of as generating categorical
labels from numerical data, and will be a primary focus in this book.

1.3.3 Big Data vs. Little Data

Data science has become conated in the public eye withbig data, the analysis of
massive data sets resulting from computer logs and sensor devices. In principle,
having more data is always better than having less, because you can always
throw some of it away by sampling to get a smaller set if necessary.

Big data is an exciting phenomenon, and we will discuss it in Chapter 12. But
in practice, there are di�culties in working with large data sets. Throughout
this book we will look at algorithms and best practices for analyzing data. In
general, things get harder once the volume gets too large. The challenges of big
data include:

� The analysis cycle time slows as data size grows: Computational opera-
tions on data sets take longer as their volume increases. Small spreadsheets
provide instantaneous response, allowing you to experiment and playwhat
if? But large spreadsheets can be slow and clumsy to work with, and
massive-enough data sets might take hours or days to get answers from.

Clever algorithms can permit amazing things to be done with big data,
but staying small generally leads to faster analysis and exploration.

� Large data sets are complex to visualize: Plots with millions of points on
them are impossible to display on computer screens or printed images, let
alone conceptually understand. How can we ever hope to really understand
something we cannot see?
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� Simple models do not require massive data to �t or evaluate: A typical
data science task might be to make a decision (say, whether I should o�er
this fellow life insurance?) on the basis of a small number of variables:
say age, gender, height, weight, and the presence or absence of existing
medical conditions.

If I have this data on 1 million people with their associated life outcomes, I
should be able to build a good general model of coverage risk. It probably
wouldn't help me build a substantially better model if I had this data
on hundreds of millions of people. The decision criteria on only a few
variables (like age and martial status) cannot be too complex, and should
be robust over a large number of applicants. Any observation that is so
subtle it requires massive data to tease out will prove irrelevant to a large
business which is based on volume.

Big data is sometimes calledbad data. It is often gathered as the by-product
of a given system or procedure, instead of being purposefully collected to answer
your question at hand. The result is that we might have to go to heroic e�orts
to make sense of something just because we have it.

Consider the problem of getting a pulse on voter preferences among presi-
dential candidates. The big data approach might analyze massive Twitter or
Facebook feeds, interpreting clues to their opinions in the text. The small data
approach might be to conduct a poll, asking a few hundred people this speci�c
question and tabulating the results. Which procedure do you think will prove
more accurate? The right data set is the one most directly relevant to the tasks
at hand, not necessarily the biggest one.

Take-Home Lesson: Do not blindly aspire to analyze large data sets. Seek the
right data to answer a given question, not necessarily the biggest thing you can
get your hands on.

1.4 Classi�cation and Regression

Two types of problems arise repeatedly in traditional data science and pattern
recognition applications, the challenges of classi�cation and regression. As this
book has developed, I have pushed discussions of the algorithmic approaches
to solving these problems toward the later chapters, so they can bene�t from a
solid understanding of core material in data munging, statistics, visualization,
and mathematical modeling.

Still, I will mention issues related to classi�cation and regression as they
arise, so it makes sense to pause here for a quick introduction to these problems,
to help you recognize them when you see them.

� Classi�cation : Often we seek to assign a label to an item from a discrete
set of possibilities. Such problems as predicting the winner of a particular
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sporting contest (team A or team B ?) or deciding the genre of a given
movie (comedy, drama, or animation?) areclassi�cation problems, since
each entail selecting a label from the possible choices.

� Regression: Another common task is to forecast a given numerical quan-
tity. Predicting a person's weight or how much snow we will get this year
is a regressionproblem, where we forecast the future value of a numerical
function in terms of previous values and other relevant features.

Perhaps the best way to see the intended distinction is to look at a variety
of data science problems and label (classify) them as regression or classi�cation.
Di�erent algorithmic methods are used to solve these two types of problems,
although the same questions can often be approached in either way:

� Will the price of a particular stock be higher or lower tomorrow? (classi-
�cation)

� What will the price of a particular stock be tomorrow? (regression)

� Is this person a good risk to sell an insurance policy to? (classi�cation)

� How long do we expect this person to live? (regression)

Keep your eyes open for classi�cation and regression problems as you en-
counter them in your life, and in this book.

1.5 Data Science Television: The Quant Shop

I believe that hands-on experience is necessary to internalize basic principles.
Thus when I teach data science, I like to give each student team an interesting
but messy forecasting challenge, and demand that they build and evaluate a
predictive model for the task.

These forecasting challenges are associated with events where the students
must make testable predictions. They start from scratch: �nding the relevant
data sets, building their own evaluation environments, and devising their model.
Finally, I make them watch the event as it unfolds, so as to witness the vindi-
cation or collapse of their prediction.

As an experiment, we documented the evolution of each group's project
on video in Fall 2014. Professionally edited, this becameThe Quant Shop, a
television-like data science series for a general audience. The eight episodes of
this �rst season are available at http://www.quant-shop.com , and include:

� Finding Miss Universe { The annual Miss Universe competition aspires
to identify the most beautiful woman in the world. Can computational
models predict who will win a beauty contest? Is beauty just subjective,
or can algorithms tell who is the fairest one of all?

http://www.quant-shop.com
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� Modeling the Movies { The business of movie making involves a lot of
high-stakes data analysis. Can we build models to predict which �lm will
gross the most on Christmas day? How about identifying which actors
will receive awards for their performance?

� Winning the Baby Pool { Birth weight is an important factor in assessing
the health of a newborn child. But how accurately can we predict junior's
weight before the actual birth? How can data clarify environmental risks
to developing pregnancies?

� The Art of the Auction { The world's most valuable artworks sell at auc-
tions to the highest bidder. But can we predict how many millions a
particular J.W. Turner painting will sell for? Can computers develop an
artistic sense of what's worth buying?

� White Christmas { Weather forecasting is perhaps the most familiar do-
main of predictive modeling. Short-term forecasts are generally accurate,
but what about longer-term prediction? What places will wake up to a
snowy Christmas this year? And can you tell one month in advance?

� Predicting the Playo�s { Sports events have winners and losers, and book-
ies are happy to take your bets on the outcome of any match. How well can
statistics help predict which football team will win the Super Bowl? Can
Google's PageRank algorithm pick the winners on the �eld as accurately
as it does on the web?

� The Ghoul Pool { Death comes to all men, but when? Can we apply
actuarial models to celebrities, to decide who will be the next to die?
Similar analysis underlies the workings of the life insurance industry, where
accurate predictions of lifespan are necessary to set premiums which are
both sustainable and a�ordable.

Figure 1.8: Exciting scenes from data science television:The Quant Shop.
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� Playing the Market { Hedge fund quants get rich when guessing right
about tomorrow's prices, and poor when wrong. How accurately can we
predict future prices of gold and oil using histories of price data? What
other information goes into building a successful price model?

I encourage you to watch some episodes ofThe Quant Shopin tandem with
reading this book. We try to make it fun, although I am sure you will �nd
plenty of things to cringe at. Each show runs for thirty minutes, and maybe
will inspire you to tackle a prediction challenge of your own.

These programs will certainly give you more insight into these eight speci�c
challenges. I will use these projects throughout this book to illustrate important
lessons in how to do data science, both as positive and negative examples. These
projects provide a laboratory to see how intelligent but inexperienced people not
wildly unlike yourself thought about a data science problem, and what happened
when they did.

1.5.1 Kaggle Challenges

Another source of inspiration are challenges from Kaggle (www.kaggle.com),
which provides a competitive forum for data scientists. New challenges are
posted on a regular basis, providing a problem de�nition, training data, and
a scoring function over hidden evaluation data. A leader board displays the
scores of the strongest competitors, so you can see how well your model stacks
up in comparison with your opponents. The winners spill their modeling secrets
during post-contest interviews, to help you improve your modeling skills.

Performing well on Kaggle challenges is an excellent credential to put on your
resume to get a good job as a data scientist. Indeed, potential employers will
track you down if you are a real Kaggle star. But the real reason to participate
is that the problems are fun and inspiring, and practice helps make you a better
data scientist.

The exercises at the end of each chapter point to expired Kaggle challenges,
loosely connected to the material in that chapter. Be forewarned that Kaggle
provides a misleading glamorous view of data science as applied machine learn-
ing, because it presents extremely well-de�ned problems with the hard work
of data collection and cleaning already done for you. Still, I encourage you to
check it out for inspiration, and as a source of data for new projects.

1.6 About the War Stories

Genius and wisdom are two distinct intellectual gifts. Genius shows in discover-
ing the right answer, making imaginative mental leaps which overcome obstacles
and challenges.Wisdom shows in avoiding obstacles in the �rst place, providing
a sense of direction or guiding light that keeps us moving soundly in the right
direction.

www.kaggle.com
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Genius is manifested in technical strength and depth, the ability to see things
and do things that other people cannot. In contrast, wisdom comes from ex-
perience and general knowledge. It comes from listening to others. Wisdom
comes from humility, observing how often you have been wrong in the past and
�guring out why you were wrong, so as to better recognize future traps and
avoid them.

Data science, like most things in life, bene�ts more from wisdom than from
genius. In this book, I seek to pass on wisdom that I have accumulated the hard
way through war stories, gleaned from a diverse set of projects I have worked
on:

� Large-scale text analytics and NLP: My Data Science Laboratory at Stony
Brook University works on a variety of projects in big data, including sen-
timent analysis from social media, historical trends analysis, deep learning
approaches to natural language processing (NLP), and feature extraction
from networks.

� Start-up companies: I served as co-founder and chief scientist to two
data analytics companies: General Sentiment and Thrivemetrics. General
Sentiment analyzed large-scale text streams from news, blogs, and social
media to identify trends in the sentiment (positive or negative) associated
with people, places, and things. Thrivemetrics applied this type of analysis
to internal corporate communications, like email and messaging systems.

Neither of these ventures left me wealthy enough to forgo my royalties
from this book, but they did provide me with experience on cloud-based
computing systems, and insight into how data is used in industry.

� Collaborating with real scientists: I have had several interesting collab-
orations with biologists and social scientists, which helped shape my un-
derstanding of the complexities of working with real data. Experimental
data is horribly noisy and riddled with errors, yet you must do the best
you can with what you have, in order to discover how the world works.

� Building gambling systems: A particularly amusing project was building
a system to predict the results of jai-alai matches so we could bet on them,
an experience recounted in my bookCalculated Bets: Computers, Gam-
bling, and Mathematical Modeling to Win [Ski01]. Our system relied on
web scraping for data collection, statistical analysis, simulation/modeling,
and careful evaluation. We also have developed and evaluated predictive
models for movie grosses [ZS09], stock prices [ZS10], and football games
[HS10] using social media analysis.

� Ranking historical �gures: By analyzing Wikipedia to extract meaningful
variables on over 800,000 historical �gures, we developed a scoring func-
tion to rank them by their strength as historical memes. This ranking
does a great job separating the greatest of the great (Jesus, Napoleon,
Shakespeare, Mohammad, and Lincoln round out the top �ve) from lesser



1.7. WAR STORY: ANSWERING THE RIGHT QUESTION 21

mortals, and served as the basis for our bookWho's Bigger?: Where His-
torical Figures Really Rank [SW13].

All this experience drives what I teach in this book, especially the tales that
I describe as war stories.Every one of these war stories is true.Of course, the
stories improve somewhat in the retelling, and the dialogue has been punched
up to make them more interesting to read. However, I have tried to honestly
trace the process of going from a raw problem to a solution, so you can watch
how it unfolded.

1.7 War Story: Answering the Right Question

Our research group at Stony Brook University developed an NLP-based system
for analyzing millions of news, blogs and social media messages, and reducing
this text to trends concerning all the entities under discussion. Counting the
number of mentions each name receives in a text stream (volume) is easy, in
principle. Determining whether the connotation of a particular reference is
positive or negative (sentiment analysis) is hard. But our system did a pretty
good job, particularly when aggregated over many references.

This technology served as the foundation for a social media analysis company
named General Sentiment. It was exciting living through a start-up starting up,
facing the challenges of raising money, hiring sta�, and developing new products.

But perhaps the biggest problem we faced was answering the right question.
The General Sentiment system recorded trends about the sentiment and volume
for every person, place, and thing that was ever mentioned in news, blogs, and
social media: over 20 million distinct entities. We monitored the reputations of
celebrities and politicians. We monitored the fates of companies and products.
We tracked the performance of sports teams, and the buzz about movies. We
could do anything!

But it turns out that no one pays you to do anything. They pay you to do
something, to solve a particular problem they have, or eliminate a speci�c pain
point in their business. Being able to do anything proves to be a terrible sales
strategy, because it requires you to �nd that need afresh for each and every
customer.

Facebook didn't open up to the world until September 2006. So when Gen-
eral Sentiment started in 2008, we were at the very beginning of the social media
era. We had lots of interest from major brands and advertising agencies which
knewthat social media was ready to explode. Theyknewthis newfangled thing
was important, and that they had to be there. They knewthat proper analysis
of social media data could give them fresh insights into what their customers
were thinking. But they didn't know exactly what it was they really wanted to
know.

One aircraft engine manufacturer was very interested in learning how much
the kids talked about them on Facebook. We had to break it to them gently
that the answer was zero. Other potential customers demanded proof that we
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were more accurate than the Nielsen television ratings. But of course, if you
wanted Nielsen ratings then you should buy them from Nielsen. Our system
provided di�erent insights from a completely di�erent world. But you had to
know what you wanted in order to use them.

We did manage to get substantial contracts from a very diverse group of
customers, including consumer brands like Toyota and Blackberry, governmental
organizations like the Hawaii tourism o�ce, and even the presidential campaign
of Republican nominee Mitt Romney in 2012. Our analysts provided them
insights into a wide variety of business issues:

� What did people think about Hawaii? (Answer: they think it is a very
nice place to visit.)

� How quickly would Toyota's sentiment recover after news of serious brake
problems in their cars? (Answer: about six months.)

� What did people think about Blackberry's new phone models? (Answer:
they liked the iPhone much better.)

� How quickly would Romney's sentiment recover after insulting 47% of the
electorate in a recorded speech? (Answer: never.)

But each sale required entering a new universe, involving considerable e�ort
and imagination on the part of our sales sta� and research analysts. We never
managed to get two customers in the same industry, which would have let us
bene�t from scale and accumulated wisdom.

Of course, the customer is always right. It was our fault that we could not
explain to them the best way to use our technology. The lesson here is that the
world will not beat a path to your door just for a new source of data. You must
be able to supply the right questions before you can turn data into money.

1.8 Chapter Notes

The idea of using historical records from baseball players to establish that left-
handers have shorter lifespans is due to Halpern and Coren [HC88, HC91],
but their conclusion remains controversial. The percentage of left-handers in
the population has been rapidly growing, and the observed e�ects may be a
function of survivorship bias [McM04]. So lefties, hang in there! Full disclosure:
I am one of you.

The discipline of quantitative baseball analysis is sometimes calledsabermet-
rics, and its leading light is a fellow named Bill James. I recommend budding
data scientists read hisHistorical Baseball Abstract [Jam10] as an excellent ex-
ample of how one turns numbers into knowledge and understanding.Time
Magazineonce said of James: \Much of the joy of reading him comes from the
extravagant spectacle of a �rst-rate mind wasting itself on baseball." I thank
http://sports-reference.com for permission to use images of their website
in this book. Ditto to Amazon, the owner of IMDb.

http://sports-reference.com
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The potential of ride-sharing systems in New York was studied by Santi et.
al. [SRS+ 14], who showed that almost 95% of the trips could have been shared
with no more than �ve minutes delay per trip.

The Lydia system for sentiment analysis is described in [GSS07]. Methods
to identify changes in word meaning through analysis of historical text corpora
like Google Ngram are reported in [KARPS15].

1.9 Exercises

Identifying Data Sets

1-1. [3] Identify where interesting data sets relevant to the following domains can be
found on the web:

(a) Books.

(b) Horse racing.

(c) Stock prices.

(d) Risks of diseases.

(e) Colleges and universities.

(f) Crime rates.

(g) Bird watching.

For each of these data sources, explain what you must do to turn this data into
a usable format on your computer for analysis.

1-2. [3] Propose relevant data sources for the following The Quant Shop prediction
challenges. Distinguish between sources of data that you are suresomebodymust
have, and those where the data is clearly available to you.

(a) Miss Universe.

(b) Movie gross.

(c) Baby weight.

(d) Art auction price.

(e) White Christmas.

(f) Football champions.

(g) Ghoul pool.

(h) Gold/oil prices.

1-3. [3] Visit http://data.gov , and identify �ve data sets that sound interesting to
you. For each write a brief description, and propose three interesting things you
might do with them.

Asking Questions

1-4. [3] For each of the following data sources, propose three interesting questions
you can answer by analyzing them:

(a) Credit card billing data.

http://data.gov
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(b) Click data from http://www.Amazon.com .

(c) White Pages residential/commercial telephone directory.

1-5. [5] Visit Entrez, the National Center for Biotechnology Information (NCBI)
portal. Investigate what data sources are available, particularly the Pubmed
and Genome resources. Propose three interesting projects to explore with each
of them.

1-6. [5] You would like to conduct an experiment to establish whether your friends
prefer the taste of regular Coke or Diet Coke. Briey outline a design for such
a study.

1-7. [5] You would like to conduct an experiment to see whether students learn better
if they study without any music, with instrumental music, or with songs that
have lyrics. Briey outline the design for such a study.

1-8. [5] Traditional polling operations like Gallup use a procedure called random digit
dialing, which dials random strings of digits instead of picking phone numbers
from the phone book. Suggest why such polls are conducted using random digit
dialing.

Implementation Projects

1-9. [5] Write a program to scrape the best-seller rank for a book on Amazon.com.
Use this to plot the rank of all of Skiena's books over time. Which one of these
books should be the next item that you purchase? Do you have friends for whom
they would make a welcome and appropriate gift? :-)

1-10. [5] For your favorite sport (baseball, football, basketball, cricket, or soccer)
identify a data set with the historical statistical records for all major partici-
pants. Devise and implement a ranking system to identify the best player at
each position.

Interview Questions

1-11. [3] For each of the following questions: (1) produce a quick guess based only on
your understanding of the world, and then (2) use Google to �nd supportable
numbers to produce a more principled estimate from. How much did your two
estimates di�er by?

(a) How many piano tuners are there in the entire world?

(b) How much does the ice in a hockey rink weigh?

(c) How many gas stations are there in the United States?

(d) How many people y in and out of LaGuardia Airport every day?

(e) How many gallons of ice cream are sold in the United States each year?

(f) How many basketballs are purchased by the National Basketball Associa-
tion (NBA) each year?

(g) How many �sh are there in all the world's oceans?

(h) How many people are ying in the air right now, all over the world?

(i) How many ping-pong balls can �t in a large commercial jet?

(j) How many miles of paved road are there in your favorite country?

http://www.Amazon.com
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(k) How many dollar bills are sitting in the wallets of all people at Stony Brook
University?

(l) How many gallons of gasoline does a typical gas station sell per day?

(m) How many words are there in this book?

(n) How many cats live in New York city?

(o) How much would it cost to �ll a typical car's gas tank with Starbuck's
co�ee?

(p) How much tea is there in China?

(q) How many checking accounts are there in the United States?

1-12. [3] What is the di�erence between regression and classi�cation?

1-13. [8] How would you build a data-driven recommendation system? What are the
limitations of this approach?

1-14. [3] How did you become interested in data science?

1-15. [3] Do you think data science is an art or a science?

Kaggle Challenges

1-16. Who survived the shipwreck of the Titanic?
https://www.kaggle.com/c/titanic

1-17. Where is a particular taxi cab going?
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

1-18. How long will a given taxi trip take?
https://www.kaggle.com/c/pkdd-15-taxi-trip-time-prediction-ii

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://www.kaggle.com/c/pkdd-15-taxi-trip-time-prediction-ii


Chapter 2

Mathematical Preliminaries

A data scientist is someone who knows more statistics than a com-
puter scientist and more computer science than a statistician.

{ Josh Blumenstock

You must walk before you can run. Similarly, there is a certain level of mathe-
matical maturity which is necessary before you should be trusted to do anything
meaningful with numerical data.

In writing this book, I have assumed that the reader has had some degree
of exposure to probability and statistics, linear algebra, and continuous math-
ematics. I have also assumed that they have probably forgotten most of it, or
perhaps didn't always see the forest (why things are important, and how to use
them) for the trees (all the details of de�nitions, proofs, and operations).

This chapter will try to refresh your understanding of certain basic math-
ematical concepts. Follow along with me, and pull out your old textbooks if
necessary for future reference. Deeper concepts will be introduced later in the
book when we need them.

2.1 Probability

Probability theory provides a formal framework for reasoning about the likeli-
hood of events. Because it is a formal discipline, there are a thicket of associated
de�nitions to instantiate exactly what we are reasoning about:

� An experiment is a procedure which yields one of a set of possible out-
comes. As our ongoing example, consider the experiment of tossing two
six-sided dice, one red and one blue, with each face baring a distinct inte-
ger f 1; : : : ; 6g.

� A sample spaceS is the set of possible outcomes of an experiment. In our
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dice example, there are 36 possible outcomes, namely

S = f (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6);

(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6);

(5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); (6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)g:

� An event E is a speci�ed subset of the outcomes of an experiment. The
event that the sum of the dice equals 7 or 11 (the conditions to win at
craps on the �rst roll) is the subset

E = f (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1); (5; 6); (6; 5)g:

� The probability of an outcomes, denoted p(s) is a number with the two
properties:

{ For each outcomes in sample spaceS, 0 � p(s) � 1.

{ The sum of probabilities of all outcomes adds to one:
P

s2 S p(s) = 1.

If we assume two distinct fair dice, the probability p(s) = (1 =6) � (1=6) =
1=36 for all outcomess 2 S.

� The probability of an event E is the sum of the probabilities of the out-
comes of the experiment. Thus

p(E) =
X

s2 E

p(s):

An alternate formulation is in terms of the complement of the event �E ,
the case whenE does not occur. Then

P(E) = 1 � P( �E ):

This is useful, because often it is easier to analyzeP( �E ) than P(E) di-
rectly.

� A random variable V is a numerical function on the outcomes of a proba-
bility space. The function \sum the values of two dice" (V ((a; b)) = a+ b)
produces an integer result between 2 and 12. This implies a probabil-
ity distribution of the values of the random variable. The probability
P(V (s) = 7) = 1 =6, as previously shown, whileP(V (s) = 12) = 1 =36.

� The expected valueof a random variable V de�ned on a sample spaceS,
E(V ) is de�ned

E(V ) =
X

s2 S

p(s) � V (s):

All this you have presumably seen before. But it provides the language we
will use to connect between probability and statistics. The data we see usually
comes from measuring properties of observed events. The theory of probability
and statistics provides the tools to analyze this data.
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2.1.1 Probability vs. Statistics

Probability and statistics are related areas of mathematics which concern them-
selves with analyzing the relative frequency of events. Still, there are funda-
mental di�erences in the way they see the world:

� Probability deals with predicting the likelihood of future events, while
statistics involves the analysis of the frequency of past events.

� Probability is primarily a theoretical branch of mathematics, which studies
the consequences of mathematical de�nitions. Statistics is primarily an
applied branch of mathematics, which tries to make sense of observations
in the real world.

Both subjects are important, relevant, and useful. But they are di�erent, and
understanding the distinction is crucial in properly interpreting the relevance
of mathematical evidence. Many a gambler has gone to a cold and lonely grave
for failing to make the proper distinction between probability and statistics.

This distinction will perhaps become clearer if we trace the thought process
of a mathematician encountering her �rst craps game:

� If this mathematician were a probabilist, she would see the dice and think
\Six-sided dice? Each side of the dice is presumably equally likely to land
face up. Now assuming that each face comes up with probability 1=6, I
can �gure out what my chances are of crapping out."

� If instead a statistician wandered by, she would see the dice and think
\How do I know that they are not loaded? I'll watch a while, and keep
track of how often each number comes up. Then I can decide if my ob-
servations are consistent with the assumption of equal-probability faces.
Once I'm con�dent enough that the dice are fair, I'll call a probabilist to
tell me how to bet."

In summary, probability theory enables us to �nd the consequences of a
given ideal world, while statistical theory enables us to measure the extent to
which our world is ideal. This constant tension between theory and practice is
why statisticians prove to be a tortured group of individuals compared with the
happy-go-lucky probabilists.

Modern probability theory �rst emerged from the dice tables of France in
1654. Chevalier de M�er�e, a French nobleman, wondered whether the player or
the house had the advantage in a particular betting game.1 In the basic version,
the player rolls four dice, and wins provided none of them are a 6. The house
collects on the even money bet if at least one 6 appears.

De M�er�e brought this problem to the attention of the French mathematicians
Blaise Pascal and Pierre de Fermat, most famous as the source of Fermat's Last
Theorem. Together, these men worked out the basics of probability theory,

1He really shouldn't have wondered. The house always has the advantage.
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Figure 2.1: Venn diagrams illustrating set di�erence (left), intersection (middle),
and union (right).

along the way establishing that the house wins this dice game with probability
p = 1 � (5=6)4 � 0:517, where the probability p = 0 :5 would denote a fair game
where the house wins exactly half the time.

2.1.2 Compound Events and Independence

We will be interested in complex events computed from simpler eventsA and B
on the same set of outcomes. Perhaps eventA is that at least one of two dice
be an even number, while eventB denotes rolling a total of either 7 or 11. Note
that there exist certain outcomes ofA which are not outcomes ofB , speci�cally

A � B = f (1; 2); (1; 4); (2; 1); (2; 2); (2; 3); (2; 4); (2; 6); (3; 2); (3; 6); (4; 1);

(4; 2); (4; 4); (4; 5); (4; 6); (5; 4); (6; 2); (6; 3); (6; 4); (6; 6)g:

This is the set di�erence operation. Observe that hereB � A = fg , because
every pair adding to 7 or 11 must contain one odd and one even number.

The outcomes in common between both eventsA and B are called the in-
tersection, denoted A \ B . This can be written as

A \ B = A � (S � B ):

Outcomes which appear in eitherA or B are called theunion, denoted A [ B .
With the complement operation �A = S� A, we get a rich language for combining
events, shown in Figure 2.1. We can readily compute the probability of any of
these sets by summing the probabilities of the outcomes in the de�ned sets.

The events A and B are independentif and only if

P(A \ B ) = P(A) � P(B ):

This means that there is no special structure of outcomes shared between events
A and B . Assuming that half of the students in my class are female, and half
the students in my class are above average, we would expect that a quarter of
my students are both female and above average if the events are independent.
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Probability theorists love independent events, because it simpli�es their cal-
culations. But data scientists generally don't. When building models to predict
the likelihood of some future eventB , given knowledge of some previous event
A, we want as strong a dependence ofB on A as possible.

Suppose I always use an umbrella if and only if it is raining. Assume that
the probability it is raining here (event B ) is, say, p = 1=5. This implies the
probability that I am carrying my umbrella (event A) is q = 1=5. But even
more, if you know the state of the rain you know exactly whether I have my
umbrella. These two events are perfectlycorrelated.

By contrast, suppose the events were independent. Then

P(AjB ) =
P(A \ B )

P(B )
=

P(A)P(B )
P(B )

= P(A)

and whether it is raining has absolutely no impact on whether I carry my pro-
tective gear.

Correlations are the driving force behind predictive models, so we will discuss
how to measure them and what they mean in Section 2.3.

2.1.3 Conditional Probability

When two events are correlated, there is a dependency between them which
makes calculations more di�cult. The conditional probability of A given B ,
P(AjB ) is de�ned:

P(AjB ) =
P(A \ B )

P(B )

Recall the dice rolling events from Section 2.1.2, namely:

� Event A is that at least one of two dice be an even number.

� Event B is the sum of the two dice is either a 7 or an 11.

Observe that P(AjB ) = 1, becauseany roll summing to an odd value must
consist of one even and one odd number. ThusA \ B = B , analogous to the
umbrella case above. ForP(B jA), note that P(A \ B ) = 9 =36 and P(A) =
25=36, soP(B jA) = 9 =25.

Conditional probability will be important to us, because we are interested in
the likelihood of an event A (perhaps that a particular piece of email is spam)
as a function of some evidenceB (perhaps the distribution of words within the
document). Classi�cation problems generally reduce to computing conditional
probabilities, in one way or another.

Our primary tool to compute conditional probabilities will be Bayes theorem,
which reverses the direction of the dependencies:

P(B jA) =
P(AjB )P(B )

P(A)

Often it proves easier to compute probabilities in one direction than another, as
in this problem. By Bayes theoremP(B jA) = (1 �9=36)=(25=36) = 9=25, exactly
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Figure 2.2: The probability density function (pdf) of the sum of two dice con-
tains exactly the same information as the cumulative density function (cdf), but
looks very di�erent.

what we got before. We will revisit Bayes theorem in Section 5.6, where it will
establish the foundations of computing probabilities in the face of evidence.

2.1.4 Probability Distributions

Random variables are numerical functions where the values are associated with
probabilities of occurrence. In our example whereV (s) the sum of two tossed
dice, the function produces an integer between 2 and 12. The probability of a
particular value V (s) = X is the sum of the probabilities of all the outcomes
which add up to X .

Such random variables can be represented by theirprobability density func-
tion, or pdf. This is a graph where the x-axis represents the range of values
the random variable can take on, and they-axis denotes the probability of that
given value. Figure 2.2 (left) presents the pdf of the sum of two fair dice. Ob-
serve that the peak at X = 7 corresponds to the most frequent dice total, with
a probability of 1=6.

Such pdf plots have a strong relationship to histograms of data frequency,
where the x-axis again represents the range of value, buty now represents the
observed frequency of exactly how many event occurrences were seen for each
given value X . Converting a histogram to a pdf can be done by dividing each
bucket by the total frequency over all buckets. The sum of the entries then
becomes 1, so we get a probability distribution.

Histograms are statistical: they reect actual observations of outcomes. In
contrast, pdfs are probabilistic: they represent the underlying chance that the
next observation will have valueX . We often use the histogram of observations
h(x) in practice to estimate the probabilities2 by normalizing counts by the total

2A technique called discounting o�ers a better way to estimate the frequency of rare events,
and will be discussed in Section 11.1.2.
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Figure 2.3: iPhone quarterly sales data presented as cumulative and incremental
(quarterly) distributions. Which curve did Apple CEO Tim Cook choose to
present?

number of observations:

P(k = X ) =
h(k = X )

P
x h(x = X )

There is another way to represent random variables which often proves use-
ful, called a cumulative density function or cdf. The cdf is the running sum of
the probabilities in the pdf; as a function of k, it reects the probability that
X � k instead of the probability that X = k. Figure 2.2 (right) shows the
cdf of the dice sum distribution. The values increase monotonically from left
to right, because each term comes from adding a positive probability to the
previous total. The rightmost value is 1, because all outcomes produce a value
no greater than the maximum.

It is important to realize that the pdf P(V ) and cdf C(V ) of a given random
variable V contain exactly the same information. We can move back and forth
between them because:

P(k = X ) = C(X � k + � ) � C(X � k);

where � = 1 for integer distributions. The cdf is the running sum of the pdf, so

C(X � k) =
X

x � k

P(X = x):

Just be aware of which distribution you are looking at. Cumulative distribu-
tions always get higher as we move to the right, culminating with a probability
of C(X � 1 ) = 1. By contrast, the total area under the curve of a pdf equals
1, so the probability at any point in the distribution is generally substantially
less.
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An amusing example of the di�erence between cumulative and incremental
distributions is shown in Figure 2.3. Both distributions show exactly the same
data on Apple iPhone sales, but which curve did Apple CEO Tim Cook choose to
present at a major shareholder event? The cumulative distribution (red) shows
that sales are exploding, right? But it presents a misleading view of growth
rate, because incremental change is the derivative of this function, and hard to
visualize. Indeed, the sales-per-quarter plot (blue) shows that the rate of iPhone
sales actually had declined for the last two periods before the presentation.

2.2 Descriptive Statistics

Descriptive statistics provide ways of capturing the properties of a given data
set or sample. They summarize observed data, and provide a language to talk
about it. Representing a group of elements by a new derived element, like
mean, min, count, or sum reduces a large data set to a small summary statistic:
aggregation as data reduction.

Such statistics can become features in their own right when taken over natu-
ral groups or clusters in the full data set. There are two main types of descriptive
statistics:

� Central tendency measures, which capture the center around which the
data is distributed.

� Variation or variability measures, which describe the data spread, i.e. how
far the measurements lie from the center.

Together these statistics tell us an enormous amount about our distribution.

2.2.1 Centrality Measures

The �rst element of statistics we are exposed to in school are the basic centrality
measures: mean, median, and mode. These are the right place to start when
thinking of a single number to characterize a data set.

� Mean: You are probably quite comfortable with the use of thearithmetic
mean, where we sum values and divide by the number of observations:

� X =
1
n

nX

i =1

x i

We can easily maintain the mean under a stream of insertions and dele-
tions, by keeping the sum of values separate from the frequency count,
and divide only on demand.

The mean is very meaningful to characterize symmetric distributions with-
out outliers, like height and weight. That it is symmetric means the num-
ber of items above the mean should be roughly the same as the number
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below. That it is without outliers means that the range of values is rea-
sonably tight. Note that a single MAXINT creeping into an otherwise
sound set of observations throws the mean wildly o�. The median is a
centrality measure which proves more appropriate with such ill-behaved
distributions.

� Geometric mean: The geometric meanis the nth root of the product of n
values:  

nY

i =1

ai

! 1=n

= n
p

a1a2 : : : an

The geometric mean is always less than or equal to the arithmetic mean.
For example, the geometric mean of the sums of 36 dice rolls is 6.5201, as
opposed to the arithmetic mean of 7. It is very sensitive to values near
zero. A single value of zero lays waste to the geometric mean: no matter
what other values you have in your data, you end up with zero. This is
somewhat analogous to having an outlier of1 in an arithmetic mean.

But geometric means prove their worth when averaging ratios. The ge-
ometric mean of 1=2 and 2=1 is 1, whereas the mean is 1.25. There is
less available \room" for ratios to be less than 1 than there is for ratios
above 1, creating an asymmetry that the arithmetic mean overstates. The
geometric mean is more meaningful in these cases, as is the arithmetic
mean of the logarithms of the ratios.

� Median: The median is the exact middle value among a data set; just as
many elements lie above the median as below it. There is a quibble about
what to take as the median when you have an even number of elements.
You can take either one of the two central candidates: in any reasonable
data set these two values should be about the same. Indeed in the dice
example, both are 7.

A nice property of the median as so de�ned is that it must be a genuine
value of the original data stream. There actually is someone of median
height to you can point to as an example, but presumably no one in the
world is of exactlyaverage height. You lose this property when you average
the two center elements.

Which centrality measure is best for applications? The median typically
lies pretty close to the arithmetic mean in symmetrical distributions, but
it is often interesting to see how far apart they are, and on which side of
the mean the median lies.

The median generally proves to be a better statistic for skewed distribu-
tions or data with outliers: like wealth and income. Bill Gates adds $250
to the mean per capita wealth in the United States, but nothing to the
median. If he makes you personally feel richer, then go ahead and use the
mean. But the median is the more informative statistic here, as it will be
for any power law distribution.
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Figure 2.4: Two distinct probability distributions with � = 3000 for the lifespan
of light bulbs: normal (left) and with zero variance (right).

� Mode: The mode is the most frequent element in the data set. This is 7
in our ongoing dice example, because it occurs six times out of thirty-six
elements. Frankly, I've never seen the mode as providing much insight
as centrality measure, because it often isn't close to the center. Samples
measured over a large range should have very few repeated elements or
collisions at any particular value. This makes the mode a matter of hap-
penstance. Indeed, the most frequently occurring elements often reveal
artifacts or anomalies in a data set, such as default values or error codes
that do not really represent elements of the underlying distribution.

The related concept of the peak in a frequency distribution (or histogram)
is meaningful, but interesting peaks only get revealed through proper buck-
eting. The current peak of the annual salary distribution in the United
States lies between $30,000 and $40,000 per year, although the mode pre-
sumably sits at zero.

2.2.2 Variability Measures

The most common measure of variability is the standard deviation � , which
measures sum of squares di�erences between the individual elements and the
mean:

� =

s P n
i =1 (ai � �a)2

n � 1

A related statistic, the variance V , is the square of the standard deviation,
i.e. V = � 2. Sometimes it is more convenient to talk about variance than
standard deviation, because the term is eight characters shorter. But they
measure exactly the same thing.

As an example, consider the humble light bulb, which typically comes with
an expected working life, say� = 3000 hours, derived from some underlying dis-
tribution shown in Figure 2.4. In a conventional bulb, the chance of it lasting
longer than � is presumably about the same as that of it burning out quicker,
and this degree of uncertainty is measured by� . Alternately, imagine a \printer
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cartridge bulb," where the evil manufacturer builds very robust bulbs, but in-
cludes a counter so they can prevent it from ever glowing after 3000 hours of
use. Here� = 3000 and � = 0. Both distributions have the same mean, but
substantially di�erent variance.

The sum of squares penalty in the formula for� means that one outlier value
d units from the mean contributes as much to the variance asd2 points each
one unit from the mean, so the variance is very sensitive to outliers.

An often confusing matter concerns the denominator in the formula for stan-
dard deviation. Should we divide byn or n � 1? The di�erence here is technical.
The standard deviation of the full population divides by n, whereas the standard
deviation of the sampledivides by n � 1. The issue is that sampling just one
point tells us absolutely nothing about the underlying variance in any popu-
lation, where it is perfectly reasonable to say there is zero variance in weight
among the population of a one-person island. But for reasonable-sized data sets
n � (n � 1), so it really doesn't matter.

2.2.3 Interpreting Variance

Repeated observations of the same phenomenon do not always produce the
same results, due to random noise or error.Sampling errors result when our
observations capture unrepresentative circumstances, like measuring rush hour
tra�c on weekends as well as during the work week. Measurement errorsreect
the limits of precision inherent in any sensing device. The notion ofsignal
to noise ratio captures the degree to which a series of observations reects a
quantity of interest as opposed to data variance. As data scientists, we care
about changes in the signal instead of the noise, and such variance often makes
this problem surprisingly di�cult.

I think of variance as an inherent property of the universe, akin to the speed
of light or the time-value of money. Each morning you weigh yourself on a scale
you are guaranteed to get a di�erent number, with changes reecting when you
last ate (sampling error), the atness of the oor, or the age of the scale (both
measurement error) as much as changes in your body mass (actual variation).
So what is your real weight?

Every measured quantity is subject to some level of variance, but the phe-
nomenon cuts much deeper than that. Much of what happens in the world is
just random uctuations or arbitrary happenstance causing variance even when
the situation is unchanged. Data scientists seek to explain the world through
data, but distressingly often there is no real phenomena to explain, only a ghost
created by variance. Examples include:

� The stock market: Consider the problem of measuring the relative \skill"
of di�erent stock market investors. We know that Warren Bu�et is much
better at investing than we are. But very few professional investors prove
consistently better than others. Certain investment vehicles wildly out-
perform the market in any given time period. However, the hot fund one
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Figure 2.5: Sample variance on hitters with a real 30% success rate results in a
wide range of observed performance even over 500 trials per season.

year usually underperforms the market the year after, which shouldn't
happen if this outstanding performance was due to skill rather than luck.

The fund managers themselves are quick to credit pro�table years to their
own genius, but losses to unforeseeable circumstances. However, several
studies have shown that the performance of professional investors is es-
sentially random, meaning there is little real di�erence in skill. Most
investors are paying managers for previously-used luck. So why do these
entrail-readers get paid so much money?

� Sports performance: Students have good semesters and bad semesters, as
reected by their grade point average (GPA). Athletes have good and bad
seasons, as reected by their performance and statistics. Do such changes
reect genuine di�erences in e�ort and ability, or are they just variance?

In baseball, .300 hitters (players who hit with a 30% success rate) represent
consistency over a full season. Batting .275 is not a noteworthy season,
but hit .300 and you are a star. Hit .325 and you are likely to be the
batting champion.

Figure 2.5 shows the results of a simple simulation, where random numbers
were used to decide the outcome of each at-bat over a 500 at-bats/season.
Our synthetic player is a real .300 hitter, because we programmed it to
report a hit with probability 300/1000 (0.3). The results show that a real
.300 hitter has a 10% chance of hitting .275 or below, just by chance.
Such a season will typically be explained away by injuries or maybe the
inevitable e�ects of age on athletic performance. But it could just be
natural variance. Smart teams try to acquire a good hitter after a lousy
season, when the price is cheaper, trying to take advantage of this variance.

Our .300 hitter also has a 10% chance of batting above .325, but you
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can be pretty sure that they will ascribe such a breakout season to their
improved conditioning or training methods instead of the fact they just
got lucky. Good or bad season, or lucky/unlucky: it is hard to tell the
signal from the noise.

� Model performance: As data scientists, we will typically develop and eval-
uate several models for each predictive challenge. The models may range
from very simple to complex, and vary in their training conditions or
parameters.

Typically the model with the best accuracy on the training corpus will
be paraded triumphantly before the world as the right one. But small
di�erences in the performance between models is likely explained by sim-
ple variance rather than wisdom: which training/evaluation pairs were
selected, how well parameters were optimized, etc.

Remember this when it comes to training machine learning models. In-
deed, when asked to choose between models with small performance dif-
ferences between them, I am more likely to argue for the simplest model
than the one with the highest score. Given a hundred people trying to
predict heads and tails on a stream of coin tosses, one of them is guar-
anteed to end up with the most right answers. But there is no reason to
believe that this fellow has any better predictive powers than the rest of
us.

2.2.4 Characterizing Distributions

Distributions do not necessarily have much probability mass exactly at the
mean. Consider what your wealth would look like after you borrow $100 million,
and then bet it all on an even money coin ip. Heads you are now $100 million
in clear, tails you are $100 million in hock. Your expected wealth is zero, but
this mean does not tell you much about the shape of your wealth distribution.

However, taken together the mean and standard deviation do a decent job
of characterizing any distribution. Even a relatively small amount of mass
positioned far from the mean would add a lot to the standard deviation, so a
small value of � implies the bulk of the mass must be near the mean.

To be precise, regardless of how your data is distributed, at least (1�
(1=k2))th of the mass must lie within � k standard deviations of the mean.
This means that at least 75% of all the data must lie within 2� of the mean,
and almost 89% within 3� for any distribution.

We will see that even tighter bounds hold when we know the distribution is
well-behaved, like the Gaussian or normal distribution. But this is why it is a
great practice to report both � and � whenever you talk about averages. The
average height of adult women in the United States is 63:7� 2:7 inches, meaning
� = 63:7 and � = 2 :7. The average temperature in Orlando, Fl is 60:3 degrees
Fahrenheit. However, there have been many more 100 degree days at Disney
World than 100 inch (8.33 foot) women visiting to enjoy them.
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Take-Home Lesson: Report both the mean and standard deviation to charac-
terize your distribution, written as � � � .

2.3 Correlation Analysis

Suppose we are given two variablesx and y, represented by a sample ofn points
of the form (x i ; yi ), for 1 � i � n. We say that x and y are correlated when the
value of x has some predictive power on the value ofy.

The correlation coe�cient r (X; Y ) is a statistic that measures the degree
to which Y is a function of X , and vice versa. The value of the correlation
coe�cient ranges from � 1 to 1, where 1 means fully correlated and 0 implies
no relation, or independent variables. Negative correlations imply that the
variables areanti-correlated, meaning that when X goes up,Y goes down.

Perfectly anti-correlated variables have a correlation of� 1. Note that nega-
tive correlations are just as good for predictive purposes as positive ones. That
you are less likely to be unemployed the more education you have is an example
of a negative correlation, so the level of education can indeed help predict job
status. Correlations around 0 are useless for forecasting.

Observed correlations drives many of the predictive models we build in data
science. Representative strengths of correlations include:

� Are taller people more likely to remain lean? The observed correlation
between height and BMI is r = � 0:711, so height is indeed negatively
correlated with body mass index (BMI).3

� Do standardized tests predict the performance of students in college? The
observed correlation between SAT scores and freshmen GPA isr = 0 :47,
so yes, there is some degree of predictive power. But social economic
status is just as strongly correlated with SAT scores (r = 0 :42).4

� Does �nancial status a�ect health? The observed correlation between
household income and the prevalence of coronary artery disease isr =
� 0:717, so there is a strong negative correlation. So yes, the wealthier
you are, the lower your risk of having a heart attack.5

� Does smoking a�ect health? The observed correlation between a group's
propensity to smoke and their mortality rate is r = 0 :716, so for G-d's
sake, don't smoke.6

3https://onlinecourses.science.psu.edu/stat500/node/60
4https://research.collegeboard.org/sites/default/files/publications/2012/9/

researchreport-2009-1-socioeconomic-status-sat-freshman-gpa-analysis-data.pdf
5http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457990/ .
6http://lib.stat.cmu.edu/DASL/Stories/SmokingandCancer.html .

https://onlinecourses.science.psu.edu/stat500/node/60
https://research.collegeboard.org/sites/default/files/publications/2012/9/researchreport-2009-1-socioeconomic-status-sat-freshman-gpa-analysis-data.pdf
https://research.collegeboard.org/sites/default/files/publications/2012/9/researchreport-2009-1-socioeconomic-status-sat-freshman-gpa-analysis-data.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457990/
http://lib.stat.cmu.edu/DASL/Stories/SmokingandCancer.html
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� Do violent video games increase aggressive behavior? The observed cor-
relation between play and violence isr = 0 :19, so there is a weak but
signi�cant correlation. 7

This section will introduce the primary measurements of correlation. Fur-
ther, we study how to appropriately determine the strength and power of any
observed correlation, to help us understand when the connections between vari-
ables are real.

2.3.1 Correlation Coe�cients: Pearson and Spearman Rank

In fact, there are two primary statistics used to measure correlation. Mercifully,
both operate on the same� 1 to 1 scale, although they measure somewhat
di�erent things. These di�erent statistics are appropriate in di�erent situations,
so you should be aware of both of them.

The Pearson Correlation Coe�cient

The more prominent of the two statistics is Pearson correlation, de�ned as

r =
P n

i =1 (X i � �X )(Yi � �Y )
q P n

i =1 (X i � �X )2
q P n

i =1 (Yi � �Y )2
=

Cov(X; Y )
� (X )� (Y )

Let's parse this equation. SupposeX and Y are strongly correlated. Then
we would expect that when x i is greater than the mean �X , then yi should be
bigger than its mean �Y . When x i is lower than its mean, yi should follow. Now
look at the numerator. The sign of each term is positive when both values are
above (1� 1) or below (� 1� � 1) their respective means. The sign of each term
is negative ((� 1� 1) or (1 � � 1)) if they move in opposite directions, suggesting
negative correlation. If X and Y were uncorrelated, then positive and negative
terms should occur with equal frequency, o�setting each other and driving the
value to zero.

The numerator's operation determining the sign of the correlation is so useful
that we give it a name, covariance, computed:

Cov(X; Y ) =
nX

i =1

(X i � �X )(Yi � �Y ):

Remember covariance: we will see it again in Section 8.2.3.
The denominator of the Pearson formula reects the amount of variance in

the two variables, as measured by their standard deviations. The covariance
betweenX and Y potentially increases with the variance of these variables, and
this denominator is the magic amount to divide it by to bring correlation to a
� 1 to 1 scale.

7http://webspace.pugetsound.edu/facultypages/cjones/chidev/Paper/Articles/
Anderson-Aggression.pdf .

http://webspace.pugetsound.edu/facultypages/cjones/chidev/Paper/Articles/Anderson-Aggression.pdf
http://webspace.pugetsound.edu/facultypages/cjones/chidev/Paper/Articles/Anderson-Aggression.pdf
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Figure 2.6: The function y = jxj does not have a linear model, but seems like it
should be easily �tted despite weak correlations.

The Spearman Rank Correlation Coe�cient

The Pearson correlation coe�cient de�nes the degree to which a linear predictor
of the form y = m�x+ bcan �t the observed data. This generally does a good job
measuring the similarity between the variables, but it is possible to construct
pathological examples where the correlation coe�cient betweenX and Y is zero,
yet Y is completely dependent on (and hence perfectly predictable from)X .

Consider points of the form (x; jxj), where x is uniformly (or symmetrically)
sampled from the interval [� 1; 1] as shown in Figure 2.6. The correlation will
be zero because for every point (x; x ) there will be an o�setting point ( � x; x ),
yet y = jxj is a perfect predictor. Pearson correlation measures how well the
best linear predictors can work, but says nothing about weirder functions like
absolute value.

The Spearman rank correlation coe�cient essentially counts the number of
pairs of input points which are out of order. Suppose that our data set contains
points (x1; y1) and (x2; y2) where x1 < x 2 and y1 < y 2. This is a vote that
the values are positively correlated, whereas the vote would be for a negative
correlation if y2 < y 1.

Summing up over all pairs of points and normalizing properly gives us Spear-
man rank correlation. Let rank (x i ) be the rank position of x i in sorted order
among all x i , so the rank of the smallest value is 1 and the largest valuen. Then

� = 1 �
6

P
d2

i

n(n2 � 1)

where di = rank (x i ) � rank (yi ).
The relationship between our two coe�cients is better delineated by the

example in Figure 2.7. In addition to giving high scores to non-linear but
monotonic functions, Spearman correlation is less sensitive to extreme outlier
elements than Pearson. Letp = ( x1; ymax ) be the data point with largest value
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Figure 2.7: A monotonic but not linear point set has a Spearman coe�cient
r = 1 even though it has no good linear �t (left). Highly-correlated sequences
are recognized by both coe�cients (center), but the Pearson coe�cient is much
more sensitive to outliers (right).

of y in a given data set. Suppose we replacep with p0 = ( x1; 1 ). The Pearson
correlation will go crazy, since the best �t now becomes the vertical linex = x1.
But the Spearman correlation will be unchanged, since all the points were under
p, just as they are now underp0.

2.3.2 The Power and Signi�cance of Correlation

The correlation coe�cient r reects the degree to whichx can be used to predict
y in a given sample of pointsS. As jr j ! 1, these predictions get better and
better.

But the real question is how this correlation will hold up in the real world,
outside the sample. Stronger correlations have largerjr j, but also involve sam-
ples of enough points to be signi�cant. There is a wry saying that if you want
to �t your data by a straight line, it is best to sample it at only two points.
Your correlation becomes more impressive the more points it is based on.

The statistical limits in interpreting correlations are presented in Figure 2.8,
based on strength and size:

� Strength of correlation: R2: The square of the sample correlation coef-
�cient r 2 estimates the fraction of the variance in Y explained by X in
a simple linear regression. The correlation between height and weight is
approximately 0.8, meaning it explains about two thirds of the variance.

Figure 2.8 (left) shows how rapidly r 2 decreases withr . There is a pro-
found limit to how excited we should get about establishing a weak corre-
lation. A correlation of 0:5 possesses only 25% of the maximum predictive
power, and a correlation ofr = 0 :1 only 1%. Thus the predictive value of
correlations decreases rapidly withr .

What do we mean by \explaining the variance"? Let f (x) = mx + c be the
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Figure 2.8: Limits in interpreting signi�cance. The r 2 value shows that weak
correlations explain only a small fraction of the variance (left). The level of cor-
relation necessary to be statistically signi�cance decreases rapidly with sample
sizen (right).

Figure 2.9: Plotting r i = yi � f (x i ) shows that the residual values have lower
variance and mean zero. The original data points are on the left, with the
corresponding residuals on the right.
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predictive value of y from x, with the parameters m and c corresponding
to the best possible �t. The residual valuesr i = yi � f (x i ) will have mean
zero, as shown in Figure 2.9. Further, the variance of the full data set
V (Y ) should be much larger than V(r ) if there is a good linear �t f (x).
If x and y are perfectly correlated, there should be no residual error, and
V(r ) = 0. If x and y are totally uncorrelated, the �t should contribute
nothing, and V(y) � V (r ). Generally speaking, 1� r 2 = V(r )=V(y).

Consider Figure 2.9, showing a set of points (left) admitting a good linear
�t, with correlation r = 0 :94. The corresponding residualsr i = yi � f (x i )
are plotted on the right. The variance of the y values on the left V (y) =
0:056, substantially greater than the varianceV(r ) = 0 :0065 on the right.
Indeed,

1 � r 2 = 0 :116 ! V (r )=V(y) = 0 :116:

� Statistical signi�cance : The statistical signi�cance of a correlation depends
upon its sample sizen as well asr . By tradition, we say that a correlation
of n points is signi�cant if there is an � � 1=20 = 0:05 chance that we
would observe a correlation as strong asr in any random set of n points.

This is not a particularly strong standard. Even small correlations become
signi�cant at the 0.05 level with large enough sample sizes, as shown in
Figure 2.8 (right). A correlation of r = 0 :1 becomes signi�cant at � =
0:05 around n = 300, even though such a factor explains only 1% of the
variance.

Weak but signi�cant correlations can have value in big data models involving
large numbers of features. Any single feature/correlation might explain/predict
only small e�ects, but taken together a large number of weak but independent
correlations may have strong predictive power.Maybe. We will discuss signi�-
cance again in greater detail in Section 5.3.

2.3.3 Correlation Does Not Imply Causation!

You have heard this before: correlation does not imply causation:

� The number of police active in a precinct correlate strongly with the local
crime rate, but the police do not cause the crime.

� The amount of medicine people take correlates with the probability they
are sick, but the medicine does not cause the illness.

At best, the implication works only one way. But many observed correlations
are completely spurious, with neither variable having any real impact on the
other.

Still, correlation implies causation is a common error in thinking, even among
those who understand logical reasoning. Generally speaking, few statistical tools
are available to tease out whetherA really causesB . We can conduct controlled
experiments, if we can manipulate one of the variables and watch the e�ect on
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Figure 2.10: Correlation does not imply causation. (Sourcehttps://www.xkcd.
com/552.)

Figure 2.11: Cyclic trends in a time series (left) are revealed through correlating
it against shifts of itself (right) .

the other. For example, the fact that we can put people on a diet that makes
them lose weight without getting shorter is convincing evidence that weight does
not causeheight. But it is often harder to do these experiments the other way,
e.g. there is no reasonable way to make people shorter other than by hacking
o� limbs.

2.3.4 Detecting Periodicities by Autocorrelation

Suppose a space alien was hired to analyze U.S. sales at a toy company. Instead
of a nice smooth function showing a consistent trend, they would be astonished
to see a giant bump every twelfth month, every year. This alien would have
discovered the phenomenon of Christmas.

Seasonal trends reect cycles of a �xed duration, rising and falling in a reg-
ular pattern. Many human activities proceed with a seven-day cycle associated
with the work week. Large populations of a type of insect called acicadaemerge
on a 13-year or 17-year cycle, in an e�ort to prevent predators from learning to

https://www.xkcd.com/552
https://www.xkcd.com/552
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eat them.
How can we recognize such cyclic patterns in a sequenceS? Suppose we

correlate the values ofSi with Si + p, for all 1 � i � n� p. If the values are in sync
for a particular period length p, then this correlation with itself will be unusually
high relative to other possible lag values. Comparing a sequence to itself is called
an autocorrelation, and the series of correlations for all 1� k � n � 1 is called
the autocorrelation function. Figure 2.11 presents a time series of daily sales,
and the associated autocorrelation function for this data. The peak at a shift of
seven days (and every multiple of seven days) establishes that there is a weekly
periodicity in sales: more stu� gets sold on weekends.

Autocorrelation is an important concept in predicting future events, because
it means we can use previous observations as features in a model. The heuristic
that tomorrow's weather will be similar to today's is based on autocorrelation,
with a lag of p = 1 days. Certainly we would expect such a model to be
more accurate than predictions made on weather data from six months ago (lag
p = 180 days).

Generally speaking, the autocorrelation function for many quantities tends
to be highest for very short lags. This is why long-term predictions are less accu-
rate than short-term forecasts: the autocorrelations are generally much weaker.
But periodic cycles do sometimes stretch much longer. Indeed, a weather fore-
cast based on a lag ofp = 365 days will be much better than one of p = 180,
because of seasonal e�ects.

Computing the full autocorrelation function requires calculating n � 1 di�er-
ent correlations on points of the time series, which can get expensive for largen.
Fortunately, there is an e�cient algorithm based on the fast Fourier transform
(FFT), which makes it possible to construct the autocorrelation function even
for very long sequences.

2.4 Logarithms

The logarithm is the inverse exponential functiony = bx , an equation that can
be rewritten as x = log b y. This de�nition is the same as saying that

blog b y = y:

Exponential functions grow at a very fast rate: considerb = f 21; 22; 23; 24; : : :g.
In contrast, logarithms grow a very slow rate: these are just the exponents of
the previous seriesf 1; 2; 3; 4; : : :g. They are associated with any process where
we are repeatedly multiplying by some value ofb, or repeatedly dividing by b.
Just remember the de�nition:

y = log b x  ! by = x:

Logarithms are very useful things, and arise often in data analysis. Here
I detail three important roles logarithms play in data science. Surprisingly,
only one of them is related to the seven algorithmic applications of logarithms
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I present in The Algorithm Design Manual [Ski08]. Logarithms are indeed very
useful things.

2.4.1 Logarithms and Multiplying Probabilities

Logarithms were �rst invented as an aide to computation, by reducing the prob-
lem of multiplication to that of addition. In particular, to compute the product
p = x � y, we could compute the sum of the logarithmss = log b x + log b y and
then take the inverse of the logarithm (i.e. raising b to the sth power) to get p,
because:

p = x � y = b(log b x +log b y) :

This is the trick that powered the mechanical slide rules that geeks used in the
days before pocket calculators.

However, this idea remains important today, particularly when multiplying
long chains of probabilities. Probabilities are small numbers. Thus multiplying
long chains of probability yield very small numbers that govern the chances of
very rare events. There are serious numerical stability problems with oating
point multiplication on real computers. Numerical errors will creep in, and will
eventually overwhelm the true value of small-enough numbers.

Summing the logarithms of probabilities is much more numerically stable
than multiplying them, but yields an equivalent result because:

nY

i =1

pi = bP , where P =
nX

i =1

logb(pi ):

We can raise our sum to an exponential if we need the real probability, but
usually this is not necessary. When we just need to compare two probabilities
to decide which one is larger we can safely stay in log world, because bigger
logarithms correspond to bigger probabilities.

There is one quirk to be aware of. Recall that the log2( 1
2 ) = � 1. The

logarithms of probabilities are all negative numbers except for log(1) = 0. This
is the reason why equations with logs of probabilities often feature negative
signs in strange places. Be on the lookout for them.

2.4.2 Logarithms and Ratios

Ratios are quantities of the form a=b. They occur often in data sets either as
elementary features or values derived from feature pairs. Ratios naturally occur
in normalizing data for conditions (i.e. weight after some treatment over the
initial weight) or time (i.e. today's price over yesterday's price).

But ratios behave di�erently when reecting increases than decreases. The
ratio 200=100 is 200% above baseline, but 100=200 is only 50% below despite
being a similar magnitude change. Thus doing things like averaging ratios is
committing a statistical sin. Do you really want a doubling followed by a halving
to average out as an increase, as opposed to a neutral change?
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Figure 2.12: Plotting ratios on a scale cramps the space allocated to small ratios
relative to large ratios (left). Plotting the logarithms of ratios better represents
the underlying data (right).

One solution here would have been to use the geometric mean. But better is
taking the logarithm of these ratios, so that they yield equal displacement, since
log2 2 = 1 and log2(1=2) = � 1. We get the extra bonus that a unit ratio maps
to zero, so positive and negative numbers correspond to improper and proper
ratios, respectively.

A rookie mistake my students often make involves plotting the value of ratios
instead of their logarithms. Figure 2.12 (left) is a graph from a student paper,
showing the ratio of new score over old score on data over 24 hours (each red
dot is the measurement for one hour) on four di�erent data sets (each given a
row). The solid black line shows the ratio of one, where both scores give the
same result. Now try to read this graph: it isn't easy because the points on the
left side of the line are cramped together in a narrow strip. What jumps out at
you are the outliers. Certainly the new algorithm does terrible on 7UM917 in
the top row: that point all the way to the right is a real outlier.

Except that it isn't. Now look at Figure 2.12 (right), where we plot the
logarithms of the ratios. The space devoted to left and right of the black line
can now be equal. And it shows that this point wasn't really such an outlier at
all. The magnitude of improvement of the leftmost points is much greater than
that of the rightmost points. This plot reveals that new algorithm generally
makes things better, only because we are showing logs of ratios instead of the
ratios themselves.

2.4.3 Logarithms and Normalizing Skewed Distributions

Variables which follow symmetric, bell-shaped distributions tend to be nice as
features in models. They show substantial variation, so they can be used to
discriminate between things, but not over such a wide range that outliers are
overwhelming.

But not every distribution is symmetric. Consider the one in Figure 2.13
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Figure 2.13: Hitting a skewed data distribution (left) with a log often yields a
more bell-shaped distribution (right).

(left). The tail on the right goes much further than the tail on the left. And
we are destined to see far more lopsided distributions when we discuss power
laws, in Section 5.1.5. Wealth is representative of such a distribution, where
the poorest human has zero or perhaps negative wealth, the average person
(optimistically) is in the thousands of dollars, and Bill Gates is pushing $100
billion as of this writing.

We need a normalization to convert such distributions into something easier
to deal with. To ring the bell of a power law distribution we need something
non-linear, that reduces large values to a disproportionate degree compared to
more modest values.

The logarithm is the transformation of choice for power law variables. Hit
your long-tailed distribution with a log and often good things happen. The
distribution in Figure 2.13 happened to be thelog normal distribution, so taking
the logarithm yielded a perfect bell-curve on right. Taking the logarithm of
variables with a power law distribution brings them more in line with traditional
distributions. For example, as an upper-middle class professional, my wealth is
roughly the same number of logs from my starving students as I am from Bill
Gates!

Sometimes taking the logarithm proves too drastic a hit, and a less dramatic
non-linear transformation like the square root works better to normalize a dis-
tribution. The acid test is to plot a frequency distribution of the transformed
values and see if it looks bell-shaped: grossly-symmetric, with a bulge in the
middle. That is when you know you have the right function.

2.5 War Story: Fitting Designer Genes

The word bioinformatician is life science speak for \data scientist," the prac-
titioner of an emerging discipline which studies massive collections of DNA
sequence data looking for patterns. Sequence data is very interesting to work
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with, and I have played bioinformatician in research projects since the very
beginnings of the human genome project.

DNA sequences are strings on the four letter alphabetf A; C; G; T g. Proteins
form the stu� that we are physically constructed from, and are composed of
strings of 20 di�erent types of molecular units, called amino acids. Genesare
the DNA sequences which describe exactly how to make speci�c proteins, with
the units each described by a triplet of f A; C; G; T gs calledcodons.

For our purposes, it su�ces to know that there are a huge number of possible
DNA sequences describing genes whichcould code for any particular desired
protein sequence. But only one of themis used. My biologist collaborators and
I wanted to know why.

Originally, it was assumed that all of these di�erent synonymous encodings
were essentially identical, but statistics performed on sequence data made it
clear that certain codons are used more often than others. The biological con-
clusion is that \codons matter," and there are good biological reasons why this
should be.

We became interested in whether \neighboring pairs of codon matter." Per-
haps certain pairs of triples are like oil and water, and hate to mix. Certain
letter pairs in English have order preferences: you see the bigramgh far more
often than hg. Maybe this is true of DNA as well? If so, there would be pairs
of triples which should be underrepresented in DNA sequence data.

To test this, we needed a score comparing the number of times we actually
see a particular triple (say x = CAT ) next to another particular triple (say
y = GAG) to what we would expect by chance. LetF (xy) be the frequency
of xy, number of times we actually see codonx followed by codon y in the
DNA sequence database. These codons code for speci�c amino acids, saya
and b respectively. For amino acid a, the probability that it will be coded by
x is P(x) = F (x)=F(a), and similarly P(y) = F (y)=F(b). Then the expected
number of times of seeingxy is

Expected(xy) =
�

F (x)
F (a)

� �
F (y)
F (b)

�
F (ab)

Based on this, we can compute a codon pair score for any given hexamerxy
as follows:

CPS(xy) = ln
�

Observed(xy)
Expected(xy)

�
= ln

0

@ F (xy)
F (x )F (y)
F (a)F (b) F (ab)

1

A

Taking the logarithm of this ratio produced very nice properties. Most im-
portantly, the sign of the score distinguished over-represented pairs from under-
represented pairs. Because the magnitudes were symmetric (+1 was just as
impressive as� 1) we could add or average these scores in a sensible way to give
a score for each gene. We used these scores to design genes that should be bad
for viruses, which gave an exciting new technology for making vaccines. See the
chapter notes (Section 2.6) for more details.
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Figure 2.14: Patterns in DNA sequences with the lowest codon pair scores
become obvious on inspection. When interpreted in-frame, the stop symbol
TAG is substantially depleted (left). When interpreted in the other two frames,
the most avoided patterns are all very low complexity, like runs of a single base
(right)

Knowing that certain pairs of codons were bad did not explainwhy they were
bad. But by computing two related scores (details unimportant) and sorting
the triplets based on them, as shown in Figure 2.14, certain patterns popped
out. Do you notice the patterns? All the bad sequences on the left contain
TAG, which turns out to be a special codon that tells the gene to stop. And
all the bad sequences on the right consist ofC and G in very simple repetitive
sequences. These explain biologically why patterns are avoided by evolution,
meaning we discovered something very meaningful about life.

There are two take-home lessons from this story. First, developing numerical
scoring functions which highlight speci�c aspects of items can be very useful
to reveal patterns. Indeed, Chapter 4 will focus on the development of such
systems. Second, hitting such quantities with a logarithm can make them even
more useful, enabling us to see the forest for the trees.

2.6 Chapter Notes

There are many excellent introductions to probability theory available, including
[Tij12, BT08]. The same goes for elementary statistics, with good introductory
texts including [JWHT13, Whe13]. The brief history of probability theory in
this chapter is based on Weaver [Wea82].

In its strongest form, the e�cient market hypothesis states that the stock
market is essentially unpredictable using public information. My personal advice
is that you should invest in index funds that do not actively try to predict the
direction of the market. Malkiel's A Random Walk Down Wall Street [Mal99]
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is an excellent introduction to such investment thinking.
The Fast Fourier Transform (FFT) provides an O(n logn) time algorithm to

compute the full autocorrelation function of an n-element sequence, where the
straightforward computation of n correlations takes O(n2). Bracewell [Bra99]
and Brigham [Bri88] are excellent introductions to Fourier transforms and the
FFT. See also the exposition in Press et.al. [PFTV07].

The comic strip in Figure 2.10 comes from Randall Munroe's webcomicxkcd,
speci�cally https://xkcd.com/552 , and is reprinted with permission.

The war story of Section 2.5 revolves around our work on how the phe-
nomenon of codon pair bias a�ects gene translation. Figure 2.14 comes from
my collaborator Justin Gardin. See [CPS+ 08, MCP+ 10, Ski12] for discussions
of how we exploited codon pair bias to design vaccines for viral diseases like
polio and the u.

2.7 Exercises

Probability

2-1. [3] Suppose that 80% of people like peanut butter, 89% like jelly, and 78% like
both. Given that a randomly sampled person likes peanut butter, what is the
probability that she also likes jelly?

2-2. [3] Suppose that P (A) = 0 :3 and P(B ) = 0 :7.

(a) Can you compute P(A and B ) if you only know P(A) and P(B )?

(b) Assuming that events A and B arise from independent random processes:

� What is P (A and B )?

� What is P (A or B )?

� What is P (AjB )?

2-3. [3] Consider a game where your score is the maximum value from two dice.
Compute the probability of each event from f 1; : : : ; 6g.

2-4. [8] Prove that the cumulative distribution function of the maximum of a pair of
values drawn from random variable X is the square of the original cumulative
distribution function of X .

2-5. [5] If two binary random variables X and Y are independent, are �X (the com-
plement of X ) and Y also independent? Give a proof or a counterexample.

Statistics

2-6. [3] Compare each pair of distributions to decide which one has the greater
mean and the greater standard deviation. You do not need to calculate the
actual values of � and � , just how they compare with each other.

(a) i. 3; 5; 5; 5; 8; 11; 11; 11; 13.

ii. 3; 5; 5; 5; 8; 11; 11; 11; 20.

(b) i. � 20; 0; 0; 0; 15; 25; 30; 30.

ii. � 40; 0; 0; 0; 15; 25; 30; 30.

https://xkcd.com/552
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(c) i. 0; 2; 4; 6; 8; 10.

ii. 20; 22; 24; 26; 28; 30.

(d) i. 100; 200; 300; 400; 500.

ii. 0; 50; 300; 550; 600.

2-7. [3] Construct a probability distribution where none of the mass lies within one
� of the mean.

2-8. [3] How does the arithmetic and geometric mean compare on random integers?

2-9. [3] Show that the arithmetic mean equals the geometric mean when all terms
are the same.

Correlation Analysis

2-10. [3] True or false: a correlation coe�cient of � 0:9 indicates a stronger linear
relationship than a correlation coe�cient of 0 :5. Explain why.

2-11. [3] What would be the correlation coe�cient between the annual salaries of
college and high school graduates at a given company, if for each possible job
title the college graduates always made:

(a) $5,000 more than high school grads?

(b) 25% more than high school grads?

(c) 15% less than high school grads?

2-12. [3] What would be the correlation between the ages of husbands and wives if
men always married woman who were:

(a) Three years younger than themselves?

(b) Two years older than themselves?

(c) Half as old as themselves?

2-13. [5] Use data or literature found in a Google search to estimate/measure the
strength of the correlation between:

(a) Hits and walks scored for hitters in baseball.

(b) Hits and walks allowed by pitchers in baseball.

2-14. [5] Compute the Pearson and Spearman Rank correlations for uniformly drawn
samples of points (x; x k ). How do these values change as a function of increasing
k?

Logarithms

2-15. [3] Show that the logarithm of any number less than 1 is negative.

2-16. [3] Show that the logarithm of zero is unde�ned.

2-17. [5] Prove that
x � y = b(log b x +log b y )

2-18. [5] Prove the correctness of the formula for changing a base-b logarithm to base-
a, that

loga (x) = log b(x)=logb(a):
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Implementation Projects

2-19. [3] Find some interesting data sets, and compare how similar their means and
medians are. What are the distributions where the mean and median di�er on
the most?

2-20. [3] Find some interesting data sets and search all pairs for interesting correla-
tions. Perhaps start with what is available at http://www.data-manual.com/
data . What do you �nd?

Interview Questions

2-21. [3] What is the probability of getting exactly k heads on n tosses, where the
coin has a probability of p in coming up heads on each toss? What aboutk or
more heads?

2-22. [5] Suppose that the probability of getting a head on the i th toss of an ever-
changing coin is f (i ). How would you e�ciently compute the probability of
getting exactly k heads in n tosses?

2-23. [5] At halftime of a basketball game you are o�ered two possible challenges:

(a) Take three shots, and make at least two of them.

(b) Take eight shots, and make at least �ve of them.

Which challenge should you pick to have a better chance of winning the game?

2-24. [3] Tossing a coin ten times resulted in eight heads and two tails. How would
you analyze whether a coin is fair? What is the p-value?

2-25. [5] Given a stream of n numbers, show how to select one uniformly at random
using only constant storage. What if you don't know n in advance?

2-26. [5] A k-streak starts at toss i in a sequence ofn coin ips when the outcome of the
i th ip and the next k � 1 ips are identical. For example, sequence HTTTHH
contains 2-streaks starting at the second, third, and �fth tosses. What are the
expected number of k-streaks that you will see in n tosses of a fair coin ?

2-27. [5] A person randomly types an eight-digit number into a pocket calculator.
What is the probability that the number looks the same even if the calculator
is turned upside down?

2-28. [3] You play a dice rolling game where you have two choices:

(a) Roll the dice once and get rewarded with a prize equal to the outcome
number (e.g, $3 for number \3") and then stop the game.

(b) You can reject the �rst reward according to its outcome and roll the dice
a second time, and get rewarded in the same way.

Which strategy should you choose to maximize your reward? That is, for what
outcomes of the �rst roll should you chose to play the second game? What is
the statistical expectation of reward if you choose the second strategy?

2-29. [3] What is A/B testing and how does it work?

2-30. [3] What is the di�erence between statistical independence and correlation?

2-31. [3] We often say that correlation does not imply causation. What does this
mean?

http://www.data-manual.com/data
http://www.data-manual.com/data
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2-32. [5] What is the di�erence between a skewed distribution and a uniform one?

Kaggle Challenges

2-33. Cause{e�ect pairs: correlation vs. causation.
https://www.kaggle.com/c/cause-effect-pairs

2-34. Predict the next \random number" in a sequence.
https://www.kaggle.com/c/random-number-grand-challenge

2-35. Predict the fate of animals at a pet shelter.
https://www.kaggle.com/c/shelter-animal-outcomes

https://www.kaggle.com/c/cause-effect-pairs
https://www.kaggle.com/c/random-number-grand-challenge
https://www.kaggle.com/c/shelter-animal-outcomes


Chapter 3

Data Munging

On two occasions I have been asked, \Pray, Mr. Babbage, if you put
into the machine wrong �gures, will the right answers come out?"
. . . I am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

{ Charles Babbage

Most data scientists spend much of their time cleaning and formatting data.
The rest spend most of their time complaining that there is no data available
to do what they want to do.

In this chapter, we will work through some of the basic mechanics of com-
puting with data. Not the high-faluting stu� like statistics or machine learning,
but the grunt work of �nding data and cleaning it that goes under the moniker
of data munging.

While practical questions like \What is the best library or programming
language available?" are clearly important, the answers change so rapidly that
a book like this one is the wrong place to address them. So I will stick at the
level of general principles, instead of shaping this book around a particular set
of software tools. Still, we will discuss the landscape of available resources in
this chapter: why they exist, what they do, and how best to use them.

The �rst step in any data science project is getting your hands on the right
data. But this is often distressingly hard. This chapter will survey the richest
hunting grounds for data resources, and then introduce techniques for cleaning
what you kill. Wrangling your data so you that can safely analyze it is critical
for meaningful results. As Babbage himself might have said more concisely,
\garbage in, garbage out."

3.1 Languages for Data Science

In theory, every su�ciently powerful programming language is capable of ex-
pressing any algorithm worth computing. But in practice, certain programming
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languages prove much better than others at speci�c tasks. Better here might
denote easier for the programmer or perhaps more computationally e�cient ,
depending upon the mission at hand.

The primary data science programming languages to be aware of are:

� Python: This is today's bread-and-butter programming language for data
science. Python contains a variety of language features to make basic
data munging easier, like regular expressions. It is an interpreted lan-
guage, making the development process quicker and enjoyable. Python
is supported by an enormous variety of libraries, doing everything from
scraping to visualization to linear algebra and machine learning.

Perhaps the biggest strike against Python is e�ciency: interpreted lan-
guages cannot compete with compiled ones for speed. But Python compil-
ers exist in a fashion, and support linking in e�cient C/assembly language
libraries for computationally-intensive tasks. Bottom line, Python should
probably be your primary tool in working through the material we present
in this book.

� Perl: This used to be the go to language for data munging on the web,
before Python ate it for lunch. In the TIOBE programming language pop-
ularity index ( http://www.tiobe.com/tiobe-index ), Python �rst ex-
ceeded Perl in popularity in 2008 and hasn't looked back. There are several
reasons for this, including stronger support for object-oriented program-
ming and better available libraries, but the bottom line is that there are
few good reasons to start projects in Perl at this point. Don't be surprised
if you encounter it in some legacy project, however.

� R: This is the programming language of statisticians, with the deepest
libraries available for data analysis and visualization. The data science
world is split between R and Python camps, with R perhaps more suit-
able for exploration and Python better for production use. The style of
interaction with R is somewhat of an acquired taste, so I encourage you
to play with it a bit to see whether it feels natural to you.

Linkages exist between R and Python, so you can conveniently call R
library functions in Python code. This provides access to advanced statis-
tical methods, which may not be supported by the native Python libraries.

� Matlab: The Mat here stands for matrix , as Matlab is a language de-
signed for the fast and e�cient manipulation of matrices. As we will see,
many machine learning algorithms reduce to operations on matrices, mak-
ing Matlab a natural choice for engineers programming at a high-level of
abstraction.

Matlab is a proprietary system. However, much of its functionality is
available in GNU Octave, an open-source alternative.

http://www.tiobe.com/tiobe-index
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� Java and C/C++ : These mainstream programming languages for the
development of large systems are important in big data applications. Par-
allel processing systems like Hadoop and Spark are based on Java and
C++, respectively. If you are living in the world of distributed comput-
ing, then you are living in a world of Java and C++ instead of the other
languages listed here.

� Mathematica/Wolfram Alpha : Mathematica is a proprietary system pro-
viding computational support for all aspects of numerical and symbolic
mathematics, built upon the less proprietary Wolfram programming lan-
guage. It is the foundation of the Wolfram Alpha computational knowl-
edge engine, which processes natural language-like queries through a mix
of algorithms and pre-digested data sources. Check it out athttp://www.
wolframalpha.com .

I will confess a warm spot for Mathematica.1 It is what I tend to reach
for when I am doing a small data analysis or simulation, but cost has
traditionally put it out of the range of many users. The release of the
Wolfram language perhaps now opens it up to a wider community.

� Excel: Spreadsheet programs like Excel are powerful tools for exploratory
data analysis, such as playing with a given data set to see what it contains.
They deserve our respect for such applications.

Full featured spreadsheet programs contain a surprising amount of hidden
functionality for power users. A student of mine who rose to become a
Microsoft executive told me that 25% of all new feature requests for Excel
proposed functionality already present there. The special functions and
data manipulation features you want probably are in Excel if you look
hard enough, in the same way that a Python library for what you need
probably will be found if you search for it.

3.1.1 The Importance of Notebook Environments

The primary deliverable for a data science project should not be a program. It
should not be a data set. It should not be the results of running the program
on your data. It should not just be a written report.

The deliverable result of every data science project should be a computable
notebook tying together the code, data, computational results, and written
analysis of what you have learned in the process. Figure 3.1 presents an excerpt
from a Jupyter/IPython notebook, showing how it integrates code, graphics,
and documentation into a descriptive document which can be executed like a
program.

The reason this is so important is that computational results are the product
of long chains of parameter selections and design decisions. This creates several
problems that are solved by notebook computing environments:

1Full disclosure: I have known Stephen Wolfram for over thirty years. Indeed, we invented
the iPad together [Bar10, MOR + 88].

http://www.wolframalpha.com
http://www.wolframalpha.com
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Figure 3.1: Jupyter/IPython notebooks tie together code, computational re-
sults, and documentation.
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� Computations need to bereproducible. We must be able to run the same
programs again from scratch, and get exactly the same result. This means
that data pipelines must be complete: taking raw input and producing the
�nal output. It is terrible karma to start with a raw data set, do some
processing, edit/format the data �les by hand, and then do somemore
processing { because what you did by hand cannot be readily done again
on another data set, or undone after you realize that you may have goofed
up.

� Computations must be tweakable. Often reconsideration or evaluation will
prompt a change to one or more parameters or algorithms. This requires
rerunning the notebook to produce the new computation. There is nothing
more disheartening to be given a big data product without provenance and
told that this is the �nal result and you can't change anything. A notebook
is never �nished until after the entire project is done.

� Data pipelines need to bedocumented. That notebooks permit you to
integrate text and visualizations with your code provides a powerful way
to communicate what you are doing and why, in ways that traditional
programming environments cannot match.

Take-Home Lesson: Use a notebook environment like IPython or Mathematica
to build and report the results of any data science project.

3.1.2 Standard Data Formats

Data comes from all sorts of places, and in all kinds of formats. Which represen-
tation is best depends upon who the ultimate consumer is. Charts and graphs
are marvelous ways to convey the meaning of numerical data to people. Indeed,
Chapter 6 will focus on techniques for visualizing data. But these pictures are
essentially useless as a source of data to compute with. There is a long way
from printed maps to Google Maps.

The best computational data formats have several useful properties:

� They are easy for computers to parse: Data written in a useful format is
destined to be used again, elsewhere. Sophisticated data formats are often
supported by APIs that govern technical details ensuring proper format.

� They are easy for people to read: Eyeballing data is an essential operation
in many contexts. Which of the data �les in this directory is the right one
for me to use? What do we know about the data �elds in this �le? What
is the gross range of values for each particular �eld?

These use cases speak to the enormous value of being able to open a data
�le in a text editor to look at it. Typically, this means presenting the
data in a human-readable text-encoded format, with records demarcated
by separate lines, and �elds separated by delimiting symbols.
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� They are widely used by other tools and systems: The urge to invent
proprietary data standard beats �rmly in the corporate heart, and most
software developers would rather share a toothbrush than a �le format.
But these are impulses to be avoided. The power of data comes from
mixing and matching it with other data resources, which is best facilitated
by using popular standard formats.

One property I have omitted from this list is conciseness, since it is generally
not a primary concern for most applications running on modern computing
systems. The quest to minimize data storage costs often works against other
goals. Cleverly packing multiple �elds into the higher-order bits of integers saves
space, but at the cost of making it incompatible and unreadable.

General compression utilities like gzip prove amazingly good at removing the
redundancy of human-friendly formatting. Disk prices are unbelievably cheap:
as I write this you can buy a 4TB drive for about $100, meaning less than the
cost of one hour of developer time wasted programming a tighter format. Unless
you are operating at the scale of Facebook or Google, conciseness does not have
nearly the importance you are liable to think it does.2

The most important data formats/representations to be aware of are dis-
cussed below:

� CSV (comma separated value) �les: These �les provide the simplest, most
popular format to exchange data between programs. That each line repre-
sents a single record, with �elds separated by commas, is obvious from in-
spection. But subtleties revolve around special characters and text strings:
what if your data about names contains a comma, like \Thurston Howell,
Jr." The csv format provides ways to escape code such characters so they
are not treated as delimiters, but it is messy. A better alternative is to
use a rarer delimiter character, as in tsv ortab separated value�les.

The best test of whether your csv �le is properly formatted is whether
Microsoft Excel or some other spreadsheet program can read it without
hassle. Make sure the results of every project pass this test as soon as the
�rst csv �le has been written, to avoid pain later.

� XML (eXtensible Markup Language): Structured but non-tabular data
are often written as text with annotations. The natural output of a
named-entity tagger for text wraps the relevant substrings of a text in
brackets denoting person, place, or thing. I am writing this book in La-
Tex, a formatting language with bracketing commands positioned around
mathematical expressions anditalicized text. All webpages are written in
HTML, the hypertext markup language which organizes documents using
bracketing commands like<b> and </b> to enclosebold faced text .

XML is a language for writing speci�cations of such markup languages. A
proper XML speci�cation enables the user to parse any document comply-
ing with the speci�cation. Designing such speci�cations and fully adhering

2 Indeed, my friends at Google assure me that they are often slovenly about space even at
the petabyte scale.
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to them requires discipline, but is worthwhile. In the �rst version of our
Lydia text analysis system, we wrote our markups in a \pseudo-XML,"
read by ad hoc parsers that handled 99% of the documents correctly but
broke whenever we tried to extend them. After a painful switch to XML,
everything worked more reliably and more e�ciently, because we could
deploy fast, open-source XML parsers to handle all the dirty work of en-
forcing our speci�cations.

� SQL (structured query language) databases: Spreadsheets are naturally
structured around single tables of data. In contrast, relational databases
prove excellent for manipulating multiple distinct but related tables, using
SQL to provide a clunky but powerful query language.

Any reasonable database system imports and exports records as either csv
or XML �les, as well as an internal content dump. The internal represen-
tation in databases is opaque, so it really isn't accurate to describe them
as a data format. Still, I emphasize them here because SQL databases
generally prove a better and more powerful solution than manipulating
multiple data �les in an ad hoc manner.

� JSON (JavaScript Object Notation): This is a format for transmitting data
objects between programs. It is a natural way to communicate the state of
variables/data structures from one system to another. This representation
is basically a list of attribute-value pairs corresponding to variable/�eld
names, and the associated values:

{"employees":[
{"firstName":"John", "lastName":"Doe"},
{"firstName":"Anna", "lastName":"Smith"},
{"firstName":"Peter", "lastName":"Jones"}

]}

Because library functions that support reading and writing JSON objects
are readily available in all modern programming languages, it has become
a very convenient way to store data structures for later use. JSON objects
are human readable, but are quite cluttered-looking, representing arrays of
records compared to CSV �les. Use them for complex structured objects,
but not simple tables of data.

� Protocol bu�ers : These are a language/platform-neutral way of serializing
structured data for communications and storage across applications. They
are essentially lighter weight versions of XML (where you de�ne the format
of your structured data), designed to communicate small amounts of data
across programs like JSON. This data format is used for much of the inter-
machine communication at Google. Apache Thrift is a related standard,
used at Facebook.
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3.2 Collecting Data

The most critical issue in any data science or modeling project is �nding the
right data set. Identifying viable data sources is an art, one that revolves around
three basic questions:

� Who might actually have the data I need?

� Why might they decide to make it available to me?

� How can I get my hands on it?

In this section, we will explore the answers to these questions. We look at
common sources of data, and what you are likely to be able to �nd and why.
We then review the primary mechanisms for getting access, including APIs,
scraping, and logging.

3.2.1 Hunting

Who has the data, and how can you get it? Some of the likely suspects are
reviewed below.

Companies and Proprietary Data Sources

Large companies like Facebook, Google, Amazon, American Express, and Blue
Cross have amazing amounts of exciting data about users and transactions,
data which could be used to improve how the world works. The problem is that
getting outside access is usually impossible. Companies are reluctant to share
data for two good reasons:

� Business issues, and the fear of helping their competition.

� Privacy issues, and the fear of o�ending their customers.

A heartwarming tale of what can happen with corporate data release oc-
curred when AOL provided academics with a data set of millions of queries to
its search engine, carefully stripped of identifying information. The �rst thing
the academics discovered was that the most frequently-entered queries were des-
perate attempts to escape to other search engines like Google. This did nothing
to increase public con�dence in the quality of AOL search.

Their second discovery was that it proved much harder to anonymize search
queries than had previously been suspected. Sure you can replace user names
with id numbers, but it is not that hard to �gure out who the guy on Long Island
repeatedly querying Steven Skiena, Stony Brook, and https://twitter.com/
search?q=Skiena&src=sprv is. Indeed, as soon as it became publicized that
people's identities had been revealed by this data release, the responsible party
was �red and the data set disappeared. User privacy is important, and ethical
issues around data science will be discussed in Section 12.7.

https://twitter.com/search?q=Skiena&src=sprv
https://twitter.com/search?q=Skiena&src=sprv
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So don't think you are going to sweet talk companies into releasing con�den-
tial user data. However, many responsible companies likeThe New York Times,
Twitter, Facebook, and Google do release certain data, typically by rate-limited
application program interfaces (APIs). They generally have two motives:

� Providing customers and third parties with data that can increase sales.
For example, releasing data about query frequency and ad pricing can
encourage more people to place ads on a given platform.

� It is generally better for the company to provide well-behaved APIs than
having cowboys repeatedly hammer and scrape their site.

So hunt for a public API before reading Section 3.2.2 on scraping. You won't
�nd exactly the content or volume that you dream of, but probably something
that will su�ce to get started. Be aware of limits and terms of use.

Other organizations do provide bulk downloads of interesting data for o�-
line analysis, as with the Google Ngrams, IMDb, and the taxi fare data sets
discussed in Chapter 1. Large data sets often come with valuable metadata,
such as book titles, image captions, and edit history, which can be re-purposed
with proper imagination.

Finally, most organizations have internal data sets of relevance to their busi-
ness. As an employee, you should be able to get privileged access while you
work there. Be aware that companies have internal data access policies, so you
will still be subject to certain restrictions. Violating the terms of these policies
is an excellent way to become an ex-employee.

Government Data Sources

Collecting data is one of the important things that governments do. Indeed,
the requirement that the United States conduct a census of its population is
mandated by our constitution, and has been running on schedule every ten
years since 1790.

City, state, and federal governments have become increasingly committed
to open data, to facilitate novel applications and improve how government can
ful�ll its mission. The website http://Data.gov is an initiative by the federal
government to centrally collect its data sources, and at last count points to over
100,000 data sets!

Government data di�ers from industrial data in that, in principle, it belongs
to the People. The Freedom of Information Act (FOI) enables any citizen to
make a formal request for any government document or data set. Such a request
triggers a process to determine what can be released without compromising the
national interest or violating privacy.

State governments operate under �fty di�erent sets of laws, so data that is
tightly held in one jurisdiction may be freely available in others. Major cities
like New York have larger data processing operations than many states, again
with restrictions that vary by location.

http://Data.gov
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I recommend the following way of thinking about government records. If
you cannot �nd what you need online after some snooping around, �gure out
which agency is likely to have it. Make a friendly call to them to see if they
can help you �nd what you want. But if they stonewall you, feel free to try for
a FOI act request. Preserving privacy is typically the biggest issue in deciding
whether a particular government data set can be released.

Academic Data Sets

There is a vast world of academic scholarship, covering all that humanity has
deemed worth knowing. An increasing fraction of academic research involves
the creation of large data sets. Many journals now require making source data
available to other researchers prior to publication. Expect to be able to �nd
vast amounts of economic, medical, demographic, historical, and scienti�c data
if you look hard enough.

The key to �nding these data sets is to track down the relevant papers.
There is an academic literature on just about any topic of interest. Google
Scholar is the most accessible source of research publications. Search by topic,
and perhaps \Open Science" or \data." Research publications will typically
provide pointers to where its associated data can be found. If not, contacting
the author directly with a request should quickly yield the desired result.

The biggest catch with using published data sets is that someone else has
worked hard to analyze them before you got to them, so these previously mined
sources may have been sucked dry of interesting new results. But bringing fresh
questions to old data generally opens new possibilities.

Often interesting data science projects involve collaborations between re-
searchers from di�erent disciplines, such as the social and natural sciences.
These people speak di�erent languages than you do, and may seem intimidating
at �rst. But they often welcome collaboration, and once you get past the jargon
it is usually possible to understand their issues on a reasonable level without
specialized study. Be assured that people from other disciplines are generally
not any smarter than you are.

Sweat Equity

Sometimes you will have to work for your data, instead of just taking it from
others. Much historical data still exists only in books or other paper documents,
thus requiring manual entry and curation. A graph or table might contain
information that we need, but it can be hard to get numbers from a graphic
locked in a PDF (portable document format) �le.

I have observed that computationally-oriented people vastly over-estimate
the amount of e�ort it takes to do manual data entry. At one record per minute,
you can easily enter 1,000 records in only two work days. Instead, computational
people tend to devote massive e�orts trying to avoid such grunt work, like
hunting in vain for optical character recognition (OCR) systems that don't make
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a mess of the �le, or spending more time cleaning up a noisy scan than it would
take to just type it in again fresh.

A middle ground here comes in paying someone else to do the dirty work for
you. Crowdsourcing platforms like Amazon Turk and CrowdFlower enable you
to pay for armies of people to help you extract data, or even collect it in the
�rst place. Tasks requiring human annotation like labeling images or answering
surveys are particularly good use of remote workers. Crowdsourcing will be
discussed in greater detail in Section 3.5.

Many amazing open data resources have been built up by teams of contrib-
utors, like Wikipedia, Freebase, and IMDb. But there is an important concept
to remember: people generally work better when you pay them.

3.2.2 Scraping

Webpages often contain valuable text and numerical data, which we would like
to get our hands on. For example, in our project to build a gambling system
for the sport of jai-alai, we needed to feed our system the results of yesterday's
matches and the schedule of what games were going on today. Our solution
was to scrape the websites of jai-alai betting establishments, which posted this
information for their fans.

There are two distinct steps to make this happen, spidering and scraping:

� Spidering is the process of downloading the right set of pages for analysis.

� Scraping is the �ne art of stripping this content from each page to prepare
it for computational analysis.

The �rst thing to realize is that webpages are generally written in simple-to-
understand formatting languages like HTML and/or JavaScript. Your browser
knows these languages, and interprets the text of the webpage as a program
to specify what to display. By calling a function that emulates/pretends to
be a web browser, your program can download any webpage and interpret the
contents for analysis.

Traditionally, scraping programs were site-speci�c scripts hacked up to look
for particular HTML patterns anking the content of interest. This exploited the
fact that large numbers of pages on speci�c websites are generated by programs
themselves, and hence highly predictable in their format. But such scripts tend
to be ugly and brittle, breaking whenever the target website tinkers with the
internal structure of its pages.

Today, libraries in languages like Python (see BeautifulSoup) make it easier
to write robust spiders and scrapers. Indeed, someone else probably hasalready
written a spider/scraper for every popular website and made it available on
SourceForge or Github, so search before you code.

Certain spidering missions may be trivial, for example, hitting a single URL
(uniform resource locator) at regular time intervals. Such patterns occur in mon-
itoring, say, the sales rank of this book from its Amazon page. Somewhat more
sophisticated approaches to spidering are based on the name regularity of the
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underlying URLs. If all the pages on a site are speci�ed by the date or product
ID number, for example http://www.amazon.com/gp/product/1107041376/ ,
iterating through the entire range of interesting values becomes just a matter
of counting.

The most advanced form of spidering isweb crawling, where you systemat-
ically traverse all outgoing links from a given root page, continuing recursively
until you have visited every page on the target website. This is what Google does
in indexing the web. You can do it too, with enough patience and easy-to-�nd
web crawling libraries in Python.

Please understand that politeness limits how rapidly you should spider/crawl
a given website. It is considered bad form to hit a site more than once a second,
and indeed best practices dictate that providers block access to the people who
are hammering them.

Every major website contains aterms of servicedocument that restricts what
you can legally do with any associated data. Generally speaking, most sites will
leave you alone provided you don't hammer them, and do not redistribute any
data you scrape. Understand that this is an observation, not a legal opinion.
Indeed, read about the Aaron Schwartz case, where a well-known Internet �g-
ure was brought up on serious criminal charges for violating terms of services
in spidering/scraping journal articles, and literally hounded to death. If you
are attempting a web-scraping project professionally, be sure that management
understands the terms of service before you get too creative with someone else's
property.

3.2.3 Logging

If you own a potential data source, treat it like you own it. Internal access to
a web service, communications device, or laboratory instrument grants you the
right and responsibility to log all activity for downstream analysis.

Amazing things can be done with ambient data collection from weblogs
and sensing devices, soon destined to explode with the coming \Internet of
Things." The accelerometers in cell phones can be used to measure the strength
of earthquakes, with the correlation of events within a region su�cient to �lter
out people driving on bumpy roads or leaving their phones in a clothes dryer.
Monitoring the GPS data of a eet of taxi cabs tracks tra�c congestion on
city streets. Computational analysis of image and video streams opens the
door to countless applications. Another cool idea is to use cameras as weather
instruments, by looking at the color of the sky in the background of the millions
of photographs uploaded to photo sites daily.

The primary reason to instrument your system to collect data is because
you can. You might not know exactly what to do with it now, but any well-
constructed data set is likely to become of value once it hits a certain critical
mass of size.

Current storage costs make clear just how low a barrier it is to instrument a
system. My local Costco is currently selling three terabyte disk drive for under
$100, which is Big O of nothing. If each transaction record takes 1 kilobyte (one

http://www.amazon.com/gp/product/1107041376/
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thousand characters), this device in principle has room for 3 billion records,
roughly one for every two people on earth.

The important considerations in designing any logging system are:

� Build it to endure with limited maintenance. Set it and forget it, by
provisioning it with enough storage for unlimited expansion, and a backup.

� Store all �elds of possible value, without going crazy.

� Use a human-readable format or transactions database, so you can un-
derstand exactly what is in there when the time comes, months or years
later, to sit down and analyze your data.

3.3 Cleaning Data

\Garbage in, garbage out" is the fundamental principle of data analysis. The
road from raw data to a clean, analyzable data set can be a long one.

Many potential issues can arise in cleaning data for analysis. In this section,
we discuss identifying processing artifacts and integrating diverse data sets. Our
focus here is the processingbefore we do our real analysis, to make sure that
the garbage never gets in in the �rst place.

Take-Home Lesson: Savvy painting restorers only do things to the original that
are reversible. They never do harm. Similarly, data cleaning is always done
on a copy of the original data, ideally by a pipeline that makes changes in a
systematic and repeatable way.

3.3.1 Errors vs. Artifacts

Under ancient Jewish law, if a suspect on trial was unanimously found guilty
by all judges, then this suspect would beacquitted. The judges had noticed
that unanimous agreement often indicates the presence of a systemic error in
the judicial process. They reasoned that when something seems too good to be
true, a mistake has likely been made somewhere.

If we view data items as measurements about some aspect of the world,
data errors represent information that is fundamentally lost in acquisition. The
Gaussian noise blurring the resolution of our sensors represents error, precision
which has been permanently lost. The two hours of missing logs because the
server crashed represents data error: it is information which cannot be recon-
structed again.

By contrast, artifacts are generally systematic problems arising from pro-
cessing done to the raw information it was constructed from. The good news is
that processing artifacts can be corrected, so long as the original raw data set
remains available. The bad news is that these artifacts must be detected before
they can be corrected.
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Figure 3.2: What artifacts can you �nd in this time series, counting the number
of author's names �rst appearing in the scienti�c literature each year?

The key to detecting processing artifacts is the \sni� test," examining the
product closely enough to get a whi� of something bad. Something bad is usually
something unexpected or surprising, because people are naturally optimists.
Surprising observations are what data scientists live for. Indeed, such insights
are the primary reason we do what we do. But in my experience, most surprises
turn out to be artifacts, so we must look at them skeptically.

Figure 3.2 presents computational results from a project where we investi-
gated the process of scienti�c publication. It shows a time series of the 100,000
most proli�c authors, binned according to the year of their �rst paper appearing
in Pubmed, an essentially complete bibliography of the biomedical literature.

Study this �gure closely, and see if you can discover any artifacts worth
commenting on. I see at least two of them. Extra credit will be awarded if you
can �gure out what caused the problem.

The key to �nding artifacts is to look for anomalies in the data, that con-
tradict what you expect to see. What should the distribution in the number of
virgin authors look like, and how should it change over time? First, construct
a prior distribution of what you expect to see, so that you can then properly
evaluate potential anomalies against it.

My intuition says that the distribution of new top scientists should be pretty
at, because new stars are born with every successive class of graduate students.
I would also guess that there may be a gradual drift upward as population
expands, and more people enter the scienti�c community. But that's not what
I see in Figure 3.2. So try to enumerate what the anomalies/potential artifacts
are. . .

I see two big bumps when I look at Figure 3.2: a left bump starting around
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Figure 3.3: The cleaned data removes these artifacts, and the resulting distri-
bution looks correct.

1965, and a peak which explodes in 2002. On reection, the leftmost bump
makes sense. This left peak occurs the year when Pubmed �rst started to
systematically collect bibliographic records. Although there is some very in-
complete data from 1960{1964, most older scientists who had been publishing
papers for several years would \emerge" only with the start of systematic records
in 1965. So this explains the left peak, which then settles down by 1970 to what
looks like the at distribution we expected.

But what about that giant 2002 peak? And the decline in new authors to
almost zero in the years which precede it? A similar decline is also visible to
the right of the big peak. Were all the world's major scientists destined to be
born in 2002?

A careful inspection of the records in the big peak revealed the source of
the anomaly: �rst names. In the early days of Pubmed, authors were identi�ed
by their initials and last names. But late in 2001, SS SkienabecameSteven S.
Skiena, so it lookedlike a new author emerging from the heavens.

But why the declines to nothingness to the left and right of this peak? Recall
that we limited this study to the 100,000 most proli�c scientists. A scienti�c
rock star emerging in 1998 would be unlikely to appear in this ranking because
their name was doomed to change a few years later, not leaving enough time
to accumulate a full career of papers. Similar things happen at the very right
of the distribution: newly created scientists in 2010 would never be able to
achieve a full career's work in only a couple of years. Both phenomena are
neatly explained by this �rst name basis.

Cleaning this data to unify name references took us a few iterations to get
right. Even after eliminating the 2002 peak, we still saw a substantial dip in
prominent scientists starting their careers in the mid 1990s. This was because
many people who had a great half career pre-�rst names and a second great
half career post-�rst names did not rise to the threshold of a great full career
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in either single period. Thus we had to match all the names in the fullbefore
identifying who were the top 100,000 scientists.

Figure 3.3 shows our �nal distribution of authors, which matches the pla-
tonic ideal of what we expected the distribution to be. Don't be too quick to
rationalize away how your data looks coming out of the computer. My collabo-
rators were at one point ready to write o� the 2002 bump as due to increases in
research funding or the creation of new scienti�c journals. Always be suspicious
of whether your data is clean enough to trust.

3.3.2 Data Compatibility

We say that a comparison of two items is \apples to apples" when it is fair com-
parison, that the items involved are similar enough that they can be meaning-
fully stood up against each other. In contrast, \apples to oranges" comparisons
are ultimately meaningless. For example:

� It makes no sense to compare weights of 123.5 against 78.9, when one is
in pounds and the other is in kilograms.

� It makes no sense to directly compare the movie gross ofGone with the
Wind against that of Avatar, because 1939 dollars are 15.43 times more
valuable than 2009 dollars.

� It makes no sense to compare the price of gold at noon today in New York
and London, because the time zones are �ve hours o�, and the prices
a�ected by intervening events.

� It makes no sense to compare the stock price of Microsoft on February 17,
2003 to that of February 18, 2003, because the intervening 2-for-1 stock
split cut the price in half, but reects no change in real value.

These types of data comparability issues arise whenever data sets are merged.
Here I hope to show you how insidious such comparability issues can be, to
sensitize you as to why you need to be aware of them. Further, for certain
important classes of conversions I point to ways to deal with them.

Take-Home Lesson: Review the meaning of each of the �elds in any data set
you work with. If you do not understand what's in there down to the units of
measurement, there is no sensible way you can use it.

Unit Conversions

Quantifying observations in physical systems requires standard units of measure-
ment. Unfortunately there exist many functionally equivalent but incompatible
systems of measurement. My 12-year old daughter and I both weigh about 70,
but one of us is in pounds and the other in kilograms.
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Disastrous things like rocket explosions happen when measurements are en-
tered into computer systems using the wrong units of measurement. In par-
ticular, NASA lost the $125 million Mars Climate Orbiter space mission on
September 23, 1999 due to a metric-to-English conversion issue.

Such problems are best addressed by selecting a single system of measure-
ments and sticking to it. The metric system o�ers several advantages over the
traditional English system. In particular, individual measurements are naturally
expressed as single decimal quantities (like 3.28 meters) instead of incomparable
pairs of quantities (5 feet, 8 inches). This same issue arises in measuring angles
(radians vs. degrees/seconds) and weight (kilograms vs. pounds/oz).

Sticking to the metric system does not by itself solve all comparability is-
sues, since there is nothing to prevent you from mixing heights in meters and
centimeters. But it is a good start.

How can you defend yourself against incompatible units when merging data
sets? Vigilance has to be your main weapon. Make sure that you know the
intended units for each numerical column in your data set, and verify compat-
ibility when merging. Any column which does not have an associated unit or
object type should immediately be suspect.

When merging records from diverse sources, it is an excellent practice to
create a new \origin" or \source" �eld to identify where each record came from.
This provides at least the hope that unit conversion mistakes can be corrected
later, by systematically operating on the records from the problematic source.

A partially-automated procedure to detect such problems can be devised
from statistical signi�cance testing, to be discussed in Section 5.3. Suppose we
were to plot the frequencies of human heights in a merged data set of English
(feet) and metric (meter) measurements. We would see one peak in the distri-
bution around 1.8 and a second around 5.5. The existence of multiple peaks in a
distribution should make us suspicious. Thep-value resulting from signi�cance
testing on the two input populations provides a rigorous measurement of the
degree to which our suspicions are validated.

Numerical Representation Conversions

Numerical features are the easiest to incorporate into mathematical models.
Indeed, certain machine learning algorithms such as linear regression and sup-
port vector machines work only with numerically-coded data. But even turning
numbers into numbers can be a subtle problem. Numerical �elds might be rep-
resented in di�erent ways: as integers (123), as decimals (123.5), or even as
fractions (123 1/2). Numbers can even be represented as text, requiring the
conversion from \ten million" to 10000000 for numerical processing.

Numerical representation issues can take credit for destroying another rocket
ship. An Ariane 5 rocket launched at a cost of $500 million on June 4, 1996
exploded forty seconds after lift-o�, with the cause ultimately ascribed to an
unsuccessful conversion of a 64-bit oating point number to a 16-bit integer.

The distinction between integers and oating point (real) numbers is impor-
tant to maintain. Integers are counting numbers: quantities which are really
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discrete should be represented as integers. Physically measured quantities are
never precisely quanti�ed, because we live in a continuous world. Thus all mea-
surements should be reported as real numbers. Integer approximations of real
numbers are sometimes used in a misbegotten attempt to save space. Don't do
this: the quanti�cation e�ects of rounding or truncation introduces artifacts.

In one particularly clumsy data set we encountered, baby weights were rep-
resented as two integer �elds (pounds and the remaining ounces). Much better
would have been to combine them into a single decimal quantity.

Name Uni�cation

Integrating records from two distinct data sets requires them to share a common
key �eld. Names are frequently used as key �elds, but they are often reported
inconsistently. Is Jos�e the same fellow asJose? Such diacritic marks are banned
from the o�cial birth records of several U.S. states, in an aggressive attempt to
force them to be consistent.

As another case in point, databases show my publications as authored by the
Cartesian product of my �rst ( Steve, Steven, or S.), middle (Sol, S., or blank),
and last (Skiena) names, allowing for nine di�erent variations. And things get
worse if we include misspellings. I can �nd myself on Google with a �rst name
of Stephenand last names ofSkienna and Skeina.

Unifying records by key is a very ugly problem, which doesn't have a magic
bullet. This is exactly why ID numbers were invented, so use them as keys if
you possibly can.

The best general technique is uni�cation: doing simple text transformations
to reduce each name to a single canonical version. Converting all strings to
lower case increases the number of (usually correct) collisions. Eliminating
middle names or at least reducing them to an abbreviation creates even more
name matches/collisions, as does mapping �rst names to canonical versions (like
turning all Steves into Stevens).

Any such transformation runs the risk of creating Frankenstein-people, single
records assembled from multiple bodies. Applications di�er in whether the
greater danger lies in merging too aggressively or too timidly. Figure out where
your task sits on this spectrum and act accordingly.

An important concern in merging data sets is character code uni�cation.
Characters in text strings are assigned numerical representations, with the map-
ping between symbols and number governed by the character code standard.
Unfortunately, there are several di�erent character code standards in common
usage, meaning that what you scrape from a webpage might not be in the same
character code as assumed by the system which will process it.

Historically, the good old 7-bit ASCII code standard was expanded to the
8-bit IS0 8859-1 Latin alphabet code, which adds characters and punctuation
marks from several European languages.UTF-8 is an encoding of all Unicode
characters using variable numbers of 8-bit blocks, which is backwards compatible
with ASCII. It is the dominant encoding for web-pages, although other systems
remain in use.
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Correctly unifying character codes after merging is pretty much impossible.
You must have the discipline to pick a single code as a standard, and check the
encoding of each input �le on preprocessing, converting it to the target before
further work.

Time/Date Uni�cation

Data/time stamps are used to infer the relative order of events, and group events
by relative simultaneity. Integrating event data from multiple sources requires
careful cleaning to ensure meaningful results.

First let us consider issues in measuring time. The clocks from two computers
never exactly agree, so precisely aligning logs from di�erent systems requires a
mix of work and guesswork. There are also time zone issues when dealing with
data from di�erent regions, as well as diversities in local rules governing changes
in daylight saving time.

The right answer here is to align all time measurements toCoordinated Uni-
versal Time (UTC), a modern standard subsuming the traditional Greenwich
Mean Time (GMT). A related standard is UNIX time , which reports an event's
precise time in terms of the number of elapsed seconds since 00:00:00 UTC on
Thursday, January 1, 1970.

The Gregorian calendar is common throughout the technology world, al-
though many other calendar systems are in use in di�erent countries. Subtle
algorithms must be used to convert between calendar systems, as described in
[RD01]. A bigger problem for date alignment concerns the proper interpretation
of time zones and the international date line.

Time series uni�cation is often complicated by the nature of the business
calendar. Financial markets are closed on weekends and holidays, making for
questions of interpretation when you are correlating, say, stock prices to local
temperature. What is the right moment over the weekend to measure tempera-
ture, so as to be consistent with other days of the week? Languages like Python
contain extensive libraries to deal with �nancial time series data to get issues
like this correct. Similar issues arise with monthly data, because months (and
even years) have di�erent lengths.

Financial Uni�cation

Money makes the world go round, which is why so many data science projects
revolve around �nancial time series. But money can be dirty, so this data
requires cleaning.

One issue here iscurrency conversion, representing international prices using
a standardized �nancial unit. Currency exchange rates can vary by a few percent
within a given day, so certain applications require time-sensitive conversions.
Conversion rates are not truly standardized. Di�erent markets will each have
di�erent rates and spreads, the gap between buying and selling prices that cover
the cost of conversion.
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The other important correction is for ination. The time value of money
implies that a dollar today is (generally) more valuable than a dollar a year
from now, with interest rates providing the right way to discount future dollars.
Ination rates are estimated by tracking price changes over baskets of items,
and provide a way to standardize the purchasing power of a dollar over time.

Using unadjusted prices in a model over non-trivial periods of time is just
begging for trouble. A group of my students once got very excited by the
strong correlation observed between stock prices and oil prices over a thirty-
year period, and so tried to use stock prices in a commodity prediction model.
But both goods were priced in dollars, without any adjustment as they inated.
The time series of prices of essentiallyany pair of items will correlate strongly
over time when you do not correct for ination.

In fact, the most meaningful way to represent price changes over time is
probably not di�erences but returns, which normalize the di�erence by the initial
price:

r i =
pi +1 � pi

pi

This is more analogous to a percentage change, with the advantage here that
taking the logarithm of this ratio becomes symmetric to gains and losses.

Financial time series contain many other subtleties which require cleaning.
Many stocks give scheduleddividends to the shareholder on a particular date
every year. Say, for example, that Microsoft will pay a $2.50 dividend on Jan-
uary 16. If you own a share of Microsoft at the start of business that day, you
receive this check, so the value of the share then immediately drops by $2.50
the moment after the dividend is issued. This price decline reects no real loss
to the shareholder, but properly cleaned data needs to factor the dividend into
the price of the stock. It is easy to imagine a model trained on uncorrected
price data learning to sell stocks just prior to its issuing dividends, and feeling
unjustly proud of itself for doing so.

3.3.3 Dealing with Missing Values

Not all data sets are complete. An important aspect of data cleaning is iden-
tifying �elds for which data isn't there, and then properly compensating for
them:

� What is the year of death of a living person?

� What should you do with a survey question left blank, or �lled with an
obviously outlandish value?

� What is the relative frequency of events too rare to see in a limited-size
sample?

Numerical data sets expect a value for every element in a matrix. Setting
missing values to zero is tempting, but generally wrong, because there is always
some ambiguity as to whether these values should be interpreted as data or not.
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Is someone's salary zero because he is unemployed, or did he just not answer
the question?

The danger with using nonsense values as not-data symbols is that they
can get misinterpreted as data when it comes time to build models. A linear
regression model trained to predict salaries from age, education, and gender will
have trouble with people who refused to answer the question.

Using a value like � 1 as a no-data symbol has exactly the same de�ciencies
as zero. Indeed, be like the mathematician who is afraid of negative numbers:
stop at nothing to avoid them.

Take-Home Lesson: Separately maintain both the raw data and its cleaned
version. The raw data is the ground truth, and must be preserved intact for
future analysis. The cleaned data may be improved using imputation to �ll in
missing values. But keep raw data distinct from cleaned, so we can investigate
di�erent approaches to guessing.

So how should we deal with missing values? The simplest approach is to
drop all records containing missing values. This works just �ne when it leaves
enough training data, provided the missing values are absent for non-systematic
reasons. If the people refusing to state their salary were generally those above
the mean, dropping these records will lead to biased results.

But typically we want to make use of records with missing �elds. It can be
better to estimate or impute missing values, instead of leaving them blank. We
need general methods for �lling in missing values. Candidates include:

� Heuristic-based imputation: Given su�cient knowledge of the underlying
domain, we should be able to make a reasonable guess for the value of
certain �elds. If I need to �ll in a value for the year you will die, guessing
birth year+80 will prove about right on average, and a lot faster than
waiting for the �nal answer.

� Mean value imputation: Using the mean value of a variable as a proxy
for missing values is generally sensible. First, adding more values with
the mean leaves the mean unchanged, so we do not bias our statistics by
such imputation. Second, �elds with mean values add a vanilla avor to
most models, so they have a muted impact on any forecast made using
the data.

But the mean might not be appropriate if there is a systematic reason
for missing data. Suppose we used the mean death-year in Wikipedia to
impute the missing value for all living people. This would prove disastrous,
with many people recorded as dying before they were actually born.

� Random value imputation: Another approach is to select a random value
from the column to replace the missing value. This would seem to set us up
for potentially lousy guesses, but that is actually the point. Repeatedly
selecting random values permits statistical evaluation of the impact of
imputation. If we run the model ten times with ten di�erent imputed
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values and get widely varying results, then we probably shouldn't have
much con�dence in the model. This accuracy check is particularly valuable
when there is a substantial fraction of values missing from the data set.

� Imputation by nearest neighbor: What if we identify the complete record
which matches most closely on all �elds present, and use this nearest
neighbor to infer the values of what is missing? Such predictions should
be more accurate than the mean, when there are systematic reasons to
explain variance among records.

This approach requires a distance function to identify the most similar
records. Nearest neighbormethods are an important technique in data
science, and will be presented in greater detail in Section 10.2.

� Imputation by interpolation : More generally, we can use a method like
linear regression (see Section 9.1) to predict the values of the target col-
umn, given the other �elds in the record. Such models can be trained over
full records and then applied to those with missing values.

Using linear regression to predict missing values works best when there is
only one �eld missing per record. The potential danger here is creating
signi�cant outliers through lousy predictions. Regression models can easily
turn an incomplete record into an outlier, by �lling the missing �elds in
with unusually high or low values. This would lead downstream analysis
to focus more attention on the records with missing values, exactly the
opposite of what we want to do.

Such concerns emphasize the importance of outlier detection, the �nal step
in the cleaning process that will be considered here.

3.3.4 Outlier Detection

Mistakes in data collection can easily produce outliers that can interfere with
proper analysis. An interesting example concerns the largest dinosaur vertebra
ever discovered. Measured at 1500 millimeters, it implies an individual that was
188 feet long. This is amazing, particularly because thesecondlargest specimen
ever discovered comes in at only 122 feet.

The most likely explanation here (see [Gol16]) is that this giant fossil never
actually existed: it has been missing from the American Museum of Natural
History for over a hundred years. Perhaps the original measurement was taken
on a conventionally-sized bone and the center two digits accidentally transposed,
reducing the vertebra down to 1050 millimeters.

Outlier elements are often created by data entry mistakes, as apparently was
the case here. They can also result from errors in scraping, say an irregularity
in formatting causing a footnote number to be interpreted as a numerical value.
Just because something is written down doesn't make it correct. As with the
dinosaur example, a single outlier element can lead to major misinterpretations.
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General sanity checking requires looking at the largest and smallest values
in each variable/column to see whether they are too far out of line. This can
best be done by plotting the frequency histogram and looking at the location of
the extreme elements. Visual inspection can also con�rm that the distribution
looks the way it should, typically bell-shaped.

In normally distributed data, the probability that a value is k standard de-
viations from the mean decreases exponentially withk. This explains why there
are no 10-foot basketball players, and provides a sound threshold to identify
outliers. Power law distributions are less easy to detect outliers in: there really
is a Bill Gates worth over 10,000 times as much as the average individual.

It is too simple to just delete the rows containing outlier �elds and move
on. Outliers often point to more systematic problems that one must deal with.
Consider a data set of historical �gures by lifespan. It is easy to �nger the
biblical Methuselah (at 969 years) as an outlier, and remove him.

But it is better to �gure out whether he is indicative of other �gures that we
should consider removing. Observe that Methuselah had no �rmly established
birth and death dates. Perhaps the published ages of anybody without dates
should be considered suspicious enough to prune. By contrast, the person with
the shortest lifespan in Wikipedia (John I, King of France) lived only �ve days.
But his birth (November 15) and death (November 20) dates in 1316 convinces
me that his lifespan was accurate.

3.4 War Story: Beating the Market

Every time we met, my graduate student Wenbin told me we were making
money. But he sounded less and less con�dent every time I asked.

Our Lydia sentiment analysis system took in massive text feeds of news and
social media, reducing them to daily time series of frequency and sentiment
for the millions of di�erent people, places, and organizations mentioned within.
When somebody wins a sports championship, many articles get written describ-
ing how great an athlete they are. But when this player then gets busted on drug
charges, the tone of the articles about them immediately changes. By keeping
count of the relative frequency of association with positive words (\victorious")
vs. negative words (\arrested") in the text stream, we can construct sentiment
signals for any news-worthy entity.

Wenbin studied how sentiment signals could be used to predict future events
like the gross for a given movie, in response to the quality of published reviews
or buzz. But he particularly wanted to use this data to play the stock market.
Stocks move up and down according to news. A missed earnings report is bad
news for a company, so the price goes down. Food and Drug Administration
(FDA) approval of a new drug is great news for the company which owns it, so
the price goes up. If Wenbin could use our sentiment signal to predict future
stock prices, well, let's just say I wouldn't have to pay him as a research assistant
anymore.

So he simulated a strategy of buying the stocks that showed the highest
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sentiment in that day's news, and then shorting those with the lowest sentiment.
He got great results. \See," he said. \We are making money."

The numbers looked great, but I had one quibble. Using today's news re-
sults to predict current price movements wasn't really fair, because the event
described in the article may have already moved the price before we had any
chance to read about it. Stock prices should react very quickly to important
news.

So Wenbin simulated the strategy of buying stocks based on sentiment from
the previous day's news, to create a gap between the observed news and price
changes. The return rate went down substantially, but was still positive. \See,"
he said. \We are still making money."

But I remained a little uncomfortable with this. Many economists believe
that the �nancial markets are e�cient , meaning that all public news is instantly
reected in changing prices. Prices certainly changed in response to news, but
you would not be able to get in fast enough to exploit the information. We had
to remain skeptical enough to make sure there were no data/timing problems
that could explain our results.

So I pressed Wenbin about exactly how he had performed his simulation. His
strategy bought and sold at the closing price every day. But that left sixteen
hours until the next day's open, plenty of time for the world to react to events
that happened while I slept. He switched his simulated purchase to the opening
price. Again, the return rate went down substantially, but was still positive.
\See," he said. \We are still making some money."

But might there still be other artifacts in how we timed our data, giving
us essentially tomorrow's newspaper today? In good faith, we chased down all
other possibilities we could think of, such as whether the published article dates
reected when they appeared instead of when they were written. After doing
our best to be skeptical, his strategies still seemed to show positive returns from
news sentiment.

Our paper on this analysis [ZS10] has been well received, and Wenbin has
gone on to be a successful quant, using sentiment among other signals to trade
in the �nancial markets. But I remain slightly queasy about this result. Clean-
ing our data to precisely time-stamp each news article was very di�cult to do
correctly. Our system was originally designed to produce daily time series in a
batch mode, so it is hard to be sure that we did everything right in the millions
of articles downloaded over several years to now perform �ner-scale analysis.

The take-home lesson is that cleanliness is important when there is money
on the line. Further, it is better to design a clean environment at the beginning
of analysis instead of furiously washing up at the end.

3.5 Crowdsourcing

No single person has all the answers. Not even me. Much of what passes for
wisdom is how we aggregate expertise, assembling opinions from the knowledge
and experience of others.
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Figure 3.4: Guess how many pennies I have in this jar? (left) The correct answer
was determined using precise scienti�c methods (right).

Crowdsourcingharnesses the insights and labor from large numbers of people
towards a common goal. It exploits the wisdom of crowds, that the collective
knowledge of a group of people might well be greater than that of the smartest
individual among them.

This notion began with an ox. Francis Galton, a founder of statistical science
and a relative of Charles Darwin, attended a local livestock fair in 1906. As part
of the festivities, villagers were invited to guess the weight of this particular ox,
with the person whose guess proved closest to the mark earning a prize. Almost
800 participants took a whack at it. No one picked the actual weight of 1,178
pounds, yet Galton observed that the average guess was amazingly close: 1,179
pounds! Galton's experiment suggests that for certain tasks one can get better
results by involving a diverse collection of people, instead of just asking the
experts.

Crowdsourcing serves as an important source of data in building models, es-
pecially for tasks associated with human perception. Humans remain the state-
of-the-art system in natural language processing and computer vision, achieving
the highest level of performance. The best way to gather training data often
requires asking people to score a particular text or image. Doing this on a large
enough scale to build substantial training data typically requires a large number
of annotators, indeed a crowd.

Social media and other new technologies have made it easier to collect and
aggregate opinions on a massive scale. But how can we separate the wisdom of
crowds from the cries of the rabble?

3.5.1 The Penny Demo

Let's start by performing a little wisdom of crowds experiment of our own.
Figure 3.4 contains photos of a jar of pennies I accumulated in my o�ce over
many years. How many pennies do I have in this jar? Make your own guess
now, because I am going to tell you the answer on the next page.
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To get the right answer, I had my biologist-collaborator Justin Garden weigh
the pennies on a precision laboratory scale. Dividing by the weight of a single
penny gives the count. Justin can be seen diligently performing his task in
Figure 3.4 (right).

So I ask again: how many pennies do you think I have in this jar? I performed
this experiment on students in my data science class. How will your answer
compare to theirs?

I �rst asked eleven of my students to write their opinions on cards and
quietly pass them up to me at the front of the room. Thus these guesses were
completely independent of each other. The results, sorted for convenience, were:

537, 556, 600, 636, 1200, 1250, 2350, 3000, 5000, 11,000, 15,000.

I then wrote then wrote these numbers on the board, and computed some
statistics. The median of these guesses was 1250, with a mean of 3739. In
fact, there were exactly 1879 pennies in the jar. The median score among my
students was closer to the right amount than any single guess.

But before revealing the actual total, I then asked another dozen students
to guess. The only di�erence was that this cohort had seen the guesses from
the �rst set of students written on the board. Their choices were:

750, 750, 1000, 1000, 1000, 1250, 1400, 1770, 1800, 3500, 4000, 5000.

Exposing the cohort to other people's guesses strongly conditioned the dis-
tribution by eliminating all outliers: the minimum among the second group was
greater than four of the previous guesses, and the maximum less than or equal
to three of the previous round. Within this cohort, the median was 1325 and
the mean 1935. Both happen to be somewhat closer to the actual answer, but
it is clear that group-think had settled in to make it happen.

Anchoring is the well-known cognitive bias that people's judgments get ir-
rationally �xated on the �rst number they hear. Car dealers exploit this all the
time, initially giving an inated cost for the vehicle so that subsequent prices
sound like a bargain.

I then did one �nal test before revealing the answer. I allowed my students
to bid on the jar, meaning that they had to be con�dent enough to risk money
on the result. This yielded exactly two bids from brave students, at 1500 and
2000 pennies respectively. I pocketed $1.21 from the sucker with the high bid,
but both proved quite close. This is not a surprise: people willing to bet their
own money on an event are, by de�nition, con�dent in their selection.

3.5.2 When is the Crowd Wise?

According to James Surowiecki in his bookThe Wisdom of Crowds [Sur05],
crowds are wise when four conditions are satis�ed:
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� When the opinions are independent: Our experiment highlighted how
easy it is for a group to lapse into group-think. People naturally get
inuenced by others. If you want someone's true opinion, you must ask
them in isolation.

� When crowds are people with diverse knowledge and methods: Crowds
only add information when there is disagreement. A committee composed
of perfectly-correlated experts contributes nothing more than you could
learn from any one of them. In the penny-guessing problem, some people
estimated the volume of the container, while others gauged the sag of my
arm as I lifted the heavy mass. Alternate approaches might have estimated
how many pennies I could have accumulated in twenty years of occasionally
emptying my pockets, or recalled their own hoarding experiences.

� When the problem is in a domain that does not need specialized knowledge:
I trust the consensus of the crowd in certain important decisions, like
which type of car to buy or who should serve as the president of my
country (gulp). But when it comes to deciding whether my tumor sample
is cancerous or benign, I will trust the word of one doctor over a cast of
1,000 names drawn at random from the phone book.

Why? Because the question at hand bene�ts greatly from specialized
knowledge and experience. There is a genuine reason why the doctor
should know more than all the others. For simpler perceptual tasks the
mob rules, but one must be careful not to ask the crowd something they
have no way of knowing.

� Opinions can be fairly aggregated: The least useful part of any mass
survey form is the open response �eld \Tell us what you think!". The
problem here is that there is no way to combine these opinions to form
a consensus, because di�erent people have di�erent issues and concerns.
Perhaps these texts could be put into buckets by similarity, but this is
hard to do e�ectively.

The most common use of such free-form responses are anecdotal. People
cherry-pick the most positive-sounding ones, then put them on a slide to
impress the boss.

Take-Home Lesson: Be an incomparable element on the partial order of life.
Diverse, independent thinking contributes the most wisdom to the crowd.

3.5.3 Mechanisms for Aggregation

Collecting wisdom from a set of responses requires using the right aggrega-
tion mechanism. For estimating numerical quantities, standard techniques like
plotting the frequency distribution and computing summary statistics are ap-
propriate. Both the mean and median implicitly assume that the errors are
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symmetrically distributed. A quick look at the shape of the distribution can
generally con�rm or reject that hypothesis.

The median is, generally speaking, a more appropriate choice than the mean
in such aggregation problems. It reduces the inuence of outliers, which is a
particular problem in the case of mass experiments where a certain fraction of
your participants are likely to be bozos. On our penny guessing data, the mean
produced a ghastly over-estimate of 3739, which reduced to 2843 after removing
the largest and smallest guess, and then down to 2005 once trimming the two
outliers on each end (recall the correct answer was 1879).

Removing outliers is a very good strategy, but we may have other grounds
to judge the reliability of our subjects, such as their performance on other tests
where we do know the answer. Taking aweighted average, where we give more
weight to the scores deemed more reliable, provides a way to take such con�dence
measures into account.

For classi�cation problems, voting is the basic aggregation mechanism. The
Condorcet jury theorem justi�es our faith in democracy. It states that if the
probability of each voter being correct on a given issue isp > 0:5, the probability
that a majority of the voters are correct (P(n)) is greater than p. In fact, it is
exactly:

P(n) =
nX

i =( n +1) =2

�
n
i

�
pi (1 � p)n � i

Large voter counts give statistical validity even to highly contested elections.
Supposep = 0 :51, meaning the forces of right are a bare majority. A jury of 101
members would reach the correct decision 57% of the time, whileP(1001) = 0:73
and P(10001) = 0:9999. The probability of a correct decision approaches 1 as
n ! 1 .

There are natural limitations to the power of electoral systems, however.
Arrow's impossibility theorem states that no electoral system for summing per-
mutations of preferences as votes satis�es four natural conditions for the fairness
of an election. This will be discussed in Section 4.6, in the context of scores and
rankings.

3.5.4 Crowdsourcing Services

Crowdsourcing services like Amazon Turk and CrowdFlower provide the oppor-
tunity for you to hire large numbers of people to do small amounts of piecework.
They help you to wrangle people, in order to create data for you to wrangle.

These crowdsourcing services maintain a large stable of freelance workers,
serving as the middleman between them and potential employers. These work-
ers, generally calledTurkers, are provided with lists of available jobs and what
they will pay, as shown in Figure 3.5. Employers generally have some ability to
control the location and credentials of who they hire, and the power to reject a
worker's e�orts without pay, if they deem it inadequate. But statistics on em-
ployers' acceptance rates are published, and good workers are unlikely to labor
for bad actors.
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Figure 3.5: Representative tasks on Mechanical Turk.

The tasks assigned to Turkers generally involve simple cognitive e�orts that
cannot currently be performed well by computers. Good applications of Turkers
include:

� Measuring aspects of human perception: Crowdsourcing systems pro-
vide e�cient ways to gather representative opinions on simple tasks. One
nice application was establishing linkages between colors in red-green-blue
space, and the names by which people typically identify them in a lan-
guage. This is important to know when writing descriptions of products
and images.

So where is the boundary in color space between \blue" and \light blue,"
or \robin's egg blue" and \teal"? The right names are a function of
culture and convention, not physics. To �nd out, you must ask people,
and crowdsourcing permits you to easily query hundreds or thousands of
di�erent people.

� Obtaining training data for machine learning classi�ers: Our primary
interest in crowdsourcing will be to produce human annotations that serve
as training data. Many machine learning problems seek to do a particular
task \as well as people do." Doing so requires a large number of training
instances to establish what people did, when given the chance.

For example, suppose we sought to build a sentiment analysis system ca-
pable of reading a written review and deciding whether its opinion of a
product is favorable or unfavorable. We will need a large number of re-
views labeled by annotators to serve as testing/training data. Further, we
need the same reviews labeled repeatedly by di�erent annotators, so as to
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identify any inter-annotator disagreements concerning the exact meaning
of a text.

� Obtaining evaluation data for computer systems: A/B testing is a stan-
dard method for optimizing user interfaces: show half of the judges version
A of a given system and the other half versionB . Then test which group
did better according to some metric. Turkers can provide feedback on how
interesting a given app is, or how well a new classi�er is performing.

One of my grad students (Yanqing Chen) used CrowdFlower to evaluate
a system he built to identify the most relevant Wikipedia category for a
particular entity. Which category better describes Barack Obama: Presi-
dents of the United Statesor African-American Authors ? For $200, he got
people to answer a total of 10,000 such multiple-choice questions, enough
for him to properly evaluate his system.

� Putting humans into the machine: There still exist many cognitive tasks
that people do much better than machines. A cleverly-designed interface
can supply user queries to people sitting inside the computer, waiting to
serve those in need.

Suppose you wanted to build an app to help the visually impaired, enabling
the user to snap a picture and ask someone for help. Maybe they are in
their kitchen, and need someone to read the label on a can to them. This
app could call a Turker as a subroutine, to do such a task as it is needed.

Of course, these image-annotation pairs should be retained for future anal-
ysis. They could serve as training data for a machine learning program to
take the people out of the loop, as much as possible.

� Independent creative e�orts: Crowdsourcing can be used to commission
large numbers of creative works on demand. You can order blog posts
or articles on demand, or written product reviews both good and bad.
Anything that you might imagine can be created, if you just specify what
you want.

Here are two silly examples that I somehow �nd inspiring:

{ The Sheep Market (http://www.thesheepmarket.com ) commissioned
10,000 drawings of sheep for pennies each. As a conceptual art piece,
it tries to sell them to the highest bidder. What creative endeavors
can you think of that people will do for you at $0.25 a pop?

{ Emoji Dick ( http://www.emojidick.com ) was a crowdsourced ef-
fort to translate the great American novel Moby Dick completely
into emoji images. Its creators partitioned the book into roughly
10,000 parts, and farmed out each part to be translated by three
separate Turkers. Other Turkers were hired to select the best one of
these to be incorporated into the �nal book. Over 800 Turkers were
involved, with the total cost of $3,676 raised by the crowd-funding
site Kickstarter.

http://www.thesheepmarket.com
http://www.emojidick.com
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� Economic/psychological experiments: Crowdsourcing has proven a boon
to social scientists conducting experiments in behavioral economics and
psychology. Instead of bribing local undergraduates to participate in their
studies, these investigators can now expand their subject pool to the entire
world. They get the power to harness larger populations, perform inde-
pendent replications in di�erent countries, and thus test whether there are
cultural biases of their hypotheses.

There are many exciting tasks that can be pro�tably completed using crowd-
sourcing. However, you are doomed to disappointment if you employ Turkers
for the wrong task, in the wrong way. Bad uses of crowdsourcing include:

� Any task that requires advanced training: Although every person possesses
unique skills and expertise, crowdsourcing workers come with no speci�c
training. They are designed to be treated as interchangeable parts. You do
not establish a personal relationship with these workers, and any sensible
gig will be too short to allow for more than a few minutes training.

Tasks requiring speci�c technical skills are not reasonably crowdsourced.
However, they might be reasonably subcontracted, in traditional longer-
term arrangements.

� Any task you cannot specify clearly: You have no mechanism for back-
and-forth communication with Turkers. Generally speaking, they have no
way to ask you questions. Thus the system works only if you can specify
your tasks clearly, concisely, and unambiguously.

This is much harder than it looks. Realize that you are trying to program
people instead of computers, with all the attendant bugs associated with
\do as I say" trumping \do what I mean." Test your speci�cations out
on local people before opening up your job to the masses, and then do
a small test run on your crowdsourcing platform to evaluate how it goes
before cutting loose with the bulk of your budget. You may be in for
some cultural surprises. Things that seem obvious to you might mean
something quite di�erent to a worker halfway around the world.

� Any task where you cannot verify whether they are doing a good job: Turk-
ers have a single motivation for taking on your piecework: they are trying
to convert their time into money as e�ciently as possible. They are look-
ing out for jobs o�ering the best buck for their bang, and the smartest ones
will seek to complete your task as quickly and thoughtlessly as possible.

Crowdsourcing platforms permit employers to withhold payment if the
contracted work is unacceptable. Taking advantage of this requires some
e�cient way to check the quality of the product. Perhaps you should
ask them to complete certain tasks where you already know the correct
answer. Perhaps you can compare their responses to that of other inde-
pendent workers, and throw out their work if it disagrees too often from
the consensus.
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It is very important to employ some quality control mechanism. Some
fraction of the available workers on any platform are bots, looking for
multiple-choice tasks to attack through randomness. Others may be peo-
ple with language skills wholly inadequate for the given task. You need
to check and reject to avoid being a sucker.

However, you cannot fairly complain about results from poorly speci�ed
tasks. Rejecting too high a fraction of work will lower your reputation,
with workers and the platform. It is particularly bad karma to refuse to
pay people but use their work product anyway.

� Any illegal task, or one too inhuman to subject people to: You are not
allowed to ask a Turker to do something illegal or unethical. The clas-
sic example is hiring someone to write bad reviews of your competitor's
products. Hiring a hit man makes you just as guilty of murder as the guy
who �red the shots. Be aware that there are electronic trails that can be
followed from the public placement of your ad directly back to you.

People at educational and research institutions are held to a higher stan-
dard than the law, through their institutional review board or IRB. The
IRB is a committee of researchers and administrative o�cials who must
approve any research on human subjects before it is undertaken. Be-
nign crowdsourcing applications such as the ones we have discussed are
routinely approved, after the researchers have undergone a short online
training course to make sure they understand the rules.

Always realize that there is a person at the other end of the machine.
Don't assign them tasks that are o�ensive, degrading, privacy-violating,
or too stressful. You will probably get better results out of your workers
if you treat them like human beings.

Getting people to do your bidding requires proper incentives, not just clear
instructions. In life, you generally get what you pay for. Be aware of the
currently prevailing minimum hourly wage in your country, and price your tasks
accordingly. This is not a legal requirement, but it is generally good business.

The sinister glow that comes from hiring workers at $0.50 per hour wears
o� quickly once you see the low quality of workers that your tasks attract. You
can easily eat up all your savings by the need to rigorously correct their work
product, perhaps by paying multiple workers do it repeatedly. Higher paying
tasks �nd workers much more quickly, so be prepared to wait if you do not pay
the prevailing rate. Bots and their functional equivalents are happier to accept
slave wages than the workers you really want to hire.

3.5.5 Gami�cation

There is an alternative to paying people to annotate or transcribe your data.
Instead, make things so much fun that people will work for you for free!

Games with a purpose(GWAP) are systems which disguise data collection
as a game people want to play, or a task people themselves want done. With
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the right combination of game, motive, and imagination, amazing things can be
done. Successful examples include:

� CAPTCHAs for optical character recognition (OCR) : CAPTCHAs are
those distorted text images you frequently encounter when creating an
account on the web. They demand that you type in the contents of text
strings shown in the image to prove that you are a human, thus enabling
them to deny access to bots and other programmed systems.

ReCAPTCHAs were invented to get useful data from the over 100 million
CAPTCHAs displayed each day. Two text strings are displayed in each,
one of which the system checks in order to grant entry. The other rep-
resents a hard case for an OCR system that is digitizing old books and
newspapers. The answers are mapped back to improve the digitization of
archival documents, transcribing over 40 million words per day.

� Psychological/IQ testing in games/apps: Psychologists have established
�ve basic personality traits as important and reproducible aspects of per-
sonality. Academic psychologists use multiple-choice personality tests to
measure where individuals sit along personality scales for each of the big
�ve traits: openness, conscientiousness, extroversion, agreeableness, and
neuroticism.

By turning these surveys into game apps (\What are your personality
traits?") psychologists have gathered personality measurements on over
75,000 di�erent people, along with other data on preferences and behavior.
This has created an enormous data set to study many interesting issues
in the psychology of personality.

� The FoldIt game for predicting protein structures: Predicting the struc-
tures formed by protein molecules is one of the great computational chal-
lenges in science. Despite many years of work, what makes a protein fold
into a particular shape is still not well understood.

FoldIt ( https://fold.it ) is a game challenging non-biologists to design
protein molecules that fold into a particular shape. Players are scored as
to how closely their design approaches the given target, with the highest
scoring players ranked on a leader board. Several scienti�c papers have
been published on the strength of the winning designs.

The key to success here is making a game that is playable enough to become
popular. This is much harder than it may appear. There are millions of free
apps in the app store, mostly games. Very few are ever tried by more than
a few hundred people, which is nowhere near enough to be interesting from a
data collection standpoint. Adding the extra constraint that the game generate
interesting scienti�c data while being playable makes this task even harder.

Motivational techniques should be used to improve playability. Keeping
score is an important part of any game, and the game should be designed so that
performance increases rapidly at �rst, in order to hook the player. Progress bars

https://fold.it
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provide encouragement to reach the next level. Awarding badges and providing
leader boards seen by others encourages greater e�orts. Napoleon instituted
a wide array of ribbons and decorations for his soldiers, observing that \it is
amazing what men will do for a strip of cloth."

The primary design principle of games such as FoldIt is to abstract the
domain technicality away, into the scoring function. The game is con�gured
so players need not really understand issues of molecular dynamics, just that
certain changes make the scores go up while others make them go down. The
player will build their own intuition about the domain as they play, resulting in
designs which may never occur to experts skilled in the art.

3.6 Chapter Notes

The Charles Babbage quote from the start of this chapter is from his book
Passages from the Life of a Philosopher[Bab11]. I recommend Padua's graphic
novel [Pad15] for an amusing but meaningful (albeit �ctitious) introduction to
his work and relationship with Ada Lovelace.

Many books deal with hands-on practical matters of data wrangling in par-
ticular programming languages. Particularly useful are the O'Reilly books for
data science in Python, including [Gru15, McK12].

The story of our jai-alai betting system, including the role of website scrap-
ing, is reported in my bookCalculated Bets[Ski01]. It is a quick and fun overview
of how to build simulation models for prediction, and will be the subject of the
war story of Section 7.8.

The failure of space missions due to numerical computing errors has been
well chronicled in popular media. See Gleick [Gle96] and Stephenson et al.
[SMB+ 99] for discussions of the Ariane 5 and Mars Climate Orbiter space mis-
sions, respectively.

The clever idea of using accelerometers in cell phones to detect earthquakes
comes from Faulkner et al. [FCH+ 14]. Representative studies of large sets of
Flickr images includes Kisilevich et al. [KKK + 10].

Kittur [KCS08] reports on experiences with crowdsourcing user studies on
Amazon Turk. Our use of CrowdFlower to identify appropriate descriptions
of historical �gures was presented in [CPS15]. Methods for gami�cation in
instruction are discussed in [DDKN11, Kap12]. Recaptchas are introduced in
Von Ahn, et al. [VAMM + 08]. The large-scale collection of psychological trait
data via mobile apps is due to Kosinski, et al. [KSG13].

3.7 Exercises

Data Munging

3-1. [3] Spend two hours getting familiar with one of the following programming
languages: Python, R, MatLab, Wolfram Alpha/Language. Then write a brief
paper with your impressions on its characteristics:
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� Expressibility.

� Runtime speed.

� Breadth of library functions.

� Programming environment.

� Suitability for algorithmically-intensive tasks.

� Suitability for general data munging tasks.

3-2. [5] Pick two of the primary data science programming languages, and write
programs to solve the following tasks in both of them. Which language did you
�nd most suitable for each task?

(a) Hello World!

(b) Read numbers from a �le, and print them out in sorted order.

(c) Read a text �le, and count the total number of words.

(d) Read a text �le, and count the total number of distinct words.

(e) Read a �le of numbers, and plot a frequency histogram of them.

(f) Download a page from the web, and scrape it.

3-3. [3] Play around for a little while with Python, R, and Matlab. Which do you
like best? What are the strengths and weaknesses of each?

3-4. [5] Construct a data set of n human heights, with p% of them recording in En-
glish (feet) and the rest with metric (meter) measurements. Use statistical tests
to test whether this distribution is distinguishable from one properly recorded
in meters. What is the boundary as a function of n and p where it becomes
clear there is a problem?

Data Sources

3-5. [3] Find a table of storage prices over time. Analyze this data, and make a
projection about the cost/volume of data storage �ve years from now. What
will disk prices be in 25 or 50 years?

3-6. [5] For one or more of the following The Quant Shop challenges, �nd relevant
data sources and assess their quality:

� Miss Universe.

� Movie gross.

� Baby weight.

� Art auction price.

� Snow on Christmas.

� Super Bowl/college champion.

� Ghoul pool?

� Future gold/oil price?

Data Cleaning
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3-7. [3] Find out what was weird about September 1752. What special steps might
the data scientists of the day have had to take to normalize annual statistics?

3-8. [3] What types of outliers might you expect to occur in the following data sets:

(a) Student grades.

(b) Salary data.

(c) Lifespans in Wikipedia.

3-9. [3] A health sensor produces a stream of twenty di�erent values, including blood
pressure, heart rate, and body temperature. Describe two or more techniques
you could use to check whether the stream of data coming from the sensor is
valid.

Implementation Projects

3-10. [5] Implement a function that extracts the set of hashtags from a data frame
of tweets. Hashtags begin with the \#" character and contain any combination
of upper and lowercase characters and digits. Assume the hashtag ends where
there is a space or a punctuation mark, like a comma, semicolon, or period.

3-11. [5] The laws governing voter registration records di�er from state to state in the
United States. Identify one or more states with very lax rules, and see what you
must do to get your hands on the data. Hint: Florida.

Crowdsourcing

3-12. [5] Describe how crowdsourced workers might have been employed to help gather
data for The Quant Shop challenges:

� Miss Universe.

� Movie gross.

� Baby weight.

� Art auction price.

� Snow on Christmas.

� Super Bowl/college champion.

� Ghoul pool.

� Future gold/oil price? :

3-13. [3] Suppose you are paying Turkers to read texts and annotate them based on
the underlying sentiment (positive or negative) that each passage conveys. This
is an opinion task, but how can we algorithmically judge whether the Turker was
answering in a random or arbitrary manner instead of doing their job seriously?

Interview Questions

3-14. [5] Suppose you built a system to predict stock prices. How would you evaluate
it?

3-15. [5] In general, how would you screen for outliers, and what should you do if you
�nd one?

3-16. [3] Why does data cleaning play a vital role in analysis?
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3-17. [5] During analysis, how do you treat missing values?

3-18. [5] Explain selection bias. Why is it important? How can data management
procedures like handling missing data make it worse?

3-19. [3] How do you e�ciently scrape web data?

Kaggle Challenges

3-20. Partially sunny, with a chance of hashtags.
https://www.kaggle.com/c/crowdflower-weather-twitter

3-21. Predict end of day stock returns, without being deceived by noise.
https://www.kaggle.com/c/the-winton-stock-market-challenge

3-22. Data cleaning and the analysis of historical climate change.
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data

https://www.kaggle.com/c/crowdflower-weather-twitter
https://www.kaggle.com/c/the-winton-stock-market-challenge
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data


Chapter 4

Scores and Rankings

Money is a scoreboard where you can rank how you're doing against
other people.

{ Mark Cuban

Scoring functionsare measures that reduce multi-dimensional records to a single
value, highlighting some particular property of the data. A familiar example
of scoring functions are those used to assign student grades in courses such as
mine. Students can then be ranked (sorted) according to these numerical scores,
and later assigned letter grades based on this order.

Grades are typically computed by functions over numerical features that
reect student performance, such as the points awarded on each homework and
exam. Each student receives a single combined score, often scaled between 0
and 100. These scores typically come from a linear combination of the input
variables, perhaps giving 8% weight to each of �ve homework assignments, and
20% weight to each of three exams.

There are several things to observe about such grading rubrics, which we
will use as a model for more general scoring and ranking functions:

� Degree of arbitrariness: Every teacher/professor uses a di�erent trade-o�
between homework scores and exams when judging their students. Some
weigh the �nal exam more than all the other variables. Some normalize
each value to 100 before averaging, while others convert each score to a Z-
score. They all di�er in philosophy, yet every teacher/professor is certain
that their grading system is the best way to do things.

� Lack of validation data: There is no gold standard informing instruc-
tors of the \right" grade that their students should have received in the
course. Students often complain that I should give them a better grade,
but self-interest seems to lurk behind these requests more than objectiv-
ity. Indeed, I rarely hear students recommend that I lower their grade.
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Without objective feedback or standards to compare against, there is no
rigorous way for me to evaluate my grading system and improve it.

� General Robustness: And yet, despite using widely-disparate and totally
unvalidated approaches, di�erent grading systems generally produce simi-
lar results. Every school has a cohort of straight-A students who monopo-
lize a sizable chunk of the top grades in each course. This couldn't happen
if all these di�erent grading systems were arbitrarily ordering student per-
formance. C students generally muddle along in the middle-to-lower tiers
of the bulk of their classes, instead of alternating As and Fs on the way
to their �nal average. All grading systems are di�erent, yet almost all are
defensible.

In this chapter, we will use scoring and ranking functions as our �rst foray
into data analysis. Not everybody loves them as much as I do. Scoring func-
tions often seem arbitrary and ad hoc, and in the wrong hands can produce
impressive-looking numbers which are essentially meaningless. Because their
e�ectiveness generally cannot be validated, these techniques are not as scientif-
ically sound as the statistical and machine learning methods we will present in
subsequent chapters.

But I think it is important to appreciate scoring functions for what they
are: useful, heuristic ways to tease understanding from large data sets. A
scoring function is sometimes called astatistic, which lends it greater dignity
and respect. We will introduce several methods for getting meaningful scores
from data.

4.1 The Body Mass Index (BMI)

Everybody loves to eat, and our modern world of plenty provides numerous
opportunities for doing so. The result is that a sizable percentage of the popu-
lation are above their optimal body weight. But how can you tell whether you
are one of them?

The body mass index(BMI) is a score or statistic designed to capture whether
your weight is under control. It is de�ned as

BMI =
mass

height2

where mass is measured in kilograms and height in meters.
As I write this, I am 68 inches tall (1.727 meters) and feeling slightly pudgy

at 150 lbs (68.0 kg). Thus my BMI is 68:0=(1:7272) = 22 :8. This isn't so terrible,
however, because commonly accepted BMI ranges in the United States de�ne:

� Underweight: below 18.5.

� Normal weight: from 18.5 to 25.

� Overweight: from 25 to 30.
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Figure 4.1: Height{weight scatter plot, for 1000 representative Americans. Col-
ors illustrate class labels in the BMI distribution.

� Obese: over 30.

Thus I am considered to be in normal range, with another dozen pounds
to gain before I o�cially become overweight. Figure 4.1 plots where a repre-
sentative group of Americans sit in height{weight space according to this scale.
Each point in this scatter plot is a person, colored according to their weight
classi�cation by BMI. Regions of seemingly solid color are so dense with people
that the dots overlap. Outlier points to the right correspond to the heaviest
individuals.

The BMI is an example of a very successful statistic/scoring function. It
is widely used and generally accepted, although some in the public health �eld
quibble that better statistics are available.

The logic for the BMI is almost sound. The square of height should be pro-
portional to area. But mass should grow proportional to the volume, not area,
so why is it not mass=height3? Historically, BMI was designed to correlate with
the percentage of body fat in an individual, which is a much harder measure-
ment to make than height and weight. Experiments with several simple scoring
functions, including m=l and m=l3 revealed that BMI works best.

It is very interesting to look at BMI distributions for extreme populations.
Consider professional athletes in American football (NFL) and basketball (NBA):

� Basketball players are notoriously tall individuals. They also have to run
up and down the court all day, promoting superior �tness.

� American football players are notoriously heavy individuals. In particular,
linemen exist only to block or move other linemen, thus placing a premium
on bulk.

Let's look at some data. Figure 4.2 shows the BMI distributions of basketball
and football players, by sport. And indeed, almost all of the basketball players
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Figure 4.2: BMI distributions of professional basketball (left) and football
(right) players.

Figure 4.3: Position in basketball (left) and football (right) is largely determined
by size.

have normal BMI despite their very abnormal heights. And the football players
are almost uniformly animals, with most scored as obese despite the fact that
they are also well-conditioned athletes. These football players are generally
optimized for strength, instead of cardiovascular �tness.

In Chapter 6, we will discuss visualization techniques to highlight the presen-
tation of data, but let's start to develop our aesthetic here. We usescatter plots
to show each individual as a point in height{weight space, with labels (weight
class or player position) shown as colors.

The breakdown of BMI by position is also revealing, and shown in Figure
4.3. In basketball, the guards are quick and sleek while the centers are tall and
intimidating. So all of these positions segregate neatly by size. In football, the
skill players (the quarterbacks, kickers, and punters) prove to be considerably
smaller than the sides of beef on the line.
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4.2 Developing Scoring Systems

Scoresare functions that map the features of each entity to a numerical value
of merit. This section will look at the basic approaches for building e�ective
scoring systems, and evaluating them.

4.2.1 Gold Standards and Proxies

Historically, paper currencies were backed with gold, meaning that one paper
dollar could always be traded in for $1 worth of gold. This was why we knew
that our money was worth more than the paper it was printed on.

In data science, agold standardis a set of labels or answers that we trust to
be correct. In the original formulation of BMI, the gold standard was the body
fat percentages carefully measured on a small number of subjects. Of course,
such measurements are subject to some error, but by de�ning these values to be
the gold standard for �tness we accept them to be the right measure. In gold
we trust.

The presence of a gold standard provides a rigorous way to develop a good
scoring system. We can use curve-�tting technique like linear regression (to be
discussed in Section 9.1) to weigh the input features so as to best approximate
the \right answers" on the gold standard instances.

But it can be hard to �nd real gold standards. Proxies are easier-to-�nd data
that shouldcorrelate well with the desired but unobtainable ground truth. BMI
was designed to be a proxy for body fat percentages. It is easily computable
from just height and weight, and does a pretty good job correlating with body
fat. This means it is seldom necessary to test buoyancy in water tanks or \pinch
an inch" with calipers, more intrusive measures that directly quantify the extent
of an individual's ab.

Suppose I wanted to improve the grading system I use for next year's data
science course. I have student data from the previous year, meaning their scores
on homework and tests, but I don't really have a gold standard on what grades
these studentsdeserved. I have only the grade I gave them, which is meaningless
if I am trying to improve the system.

I need a proxy for their unknown \real" course merit. A good candidate for
this might be each student's cumulative GPA in their other courses. Generally
speaking, student performance should be conserved across courses. If my scor-
ing system hurts the GPA of the best students and helps the lower tier, I am
probably doing something wrong.

Proxies are particularly good when evaluating scoring/ranking systems. In
our book Who's Bigger? [SW13] we used Wikipedia to rank historical �gures by
\signi�cance." We did not have any gold standard signi�cance data measuring
how important these peoplereally were. But we used several proxies to evaluate
how we were doing to keep us honest:

� The prices that collectors will pay for autographs from celebritiesshould
generally correlate with the celebrity's signi�cance. The higher the price
people are willing to pay, the bigger the star.
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� The statistics of how good a baseball player isshould generally correlate
with the player's signi�cance. The better the athlete, the more important
they are likely to be.

� Published rankings appearing in books and magazines list the top pres-
idents, movie stars, singers, authors, etc. Presidents ranked higher by
historians should generally be ranked higher by us. Such opinions, in ag-
gregate, should generally correlate with the signi�cance of these historical
�gures.

We will discuss the workings of our historical signi�cance scores in greater
detail in Section 4.7.

4.2.2 Scores vs. Rankings

Rankingsare permutations orderingn entities by merit, generally constructed by
sorting the output of some scoring system. Popular examples of rankings/rating
systems include:

� Football/basketball top twenty: Press agencies generally rank the top
college sports teams by aggregating the votes of coaches or sportswriters.
Typically, each voter provides their own personal ranking of the top twenty
teams, and each team gets awarded more points the higher they appear
on the voter's list. Summing up the points from each voter gives a total
score for each team, and sorting these scores de�nes the ranking.

� University academic rankings: The magazineU.S News and World Report
publishes annual rankings of the top American colleges and universities.
Their methodology is proprietary and changes each year, presumably to
motivate people to buy the new rankings. But it is generally a score
produced from statistics like faculty/student ratio, acceptance ratio, the
standardized test scores of its students and applicants, and maybe the
performance of its football/basketball teams :-). Polls of academic experts
also go into the mix.

� Google PageRank/search results: Every query to a search engine triggers
a substantial amount of computation, implicitly ranking the relevance of
every document on the web against the query. Documents are scored on
the basis of how well they match the text of the query, coupled with ratings
of the inherent quality of each page. The most famous page quality metric
here isPageRank, the network-centrality algorithm that will be reviewed
in Section 10.4.

� Class rank: Most High Schools rank students according to their grades,
with the top ranked student honored as class valedictorian. The scor-
ing function underlying these rankings is typically grade-point average
(GPA), where the contribution of each course is weighted by its number
of credits, and each possible letter grade is mapped to a number (typically
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A = 4 :0). But there are natural variants: many schools choose to weigh
honors courses more heavily than lightweight classes like gym, to reect
the greater di�culty of getting good grades.

Generally speaking, sorting the results of a scoring system yields a numerical
ranking. But thinking the other way, each item's ranking position (say, 493th
out of 2196) yields a numerical score for the item as well.

Since scores and rankings are duals of each other, which provides a more
meaningful representation of the data? As in any comparison, the best answer
is that it depends, on issues like:

� Will the numbers be presented in isolation? Rankings are good at pro-
viding context for interpreting scores. As I write this, Stony Brook's
basketball team ranks 111th among the nation's 351 college teams, on the
strength of our RPI (ratings percentage index) of 39.18. Which number
gives you a better idea of whether we have a good or bad team, 111th or
39.18?

� What is the underlying distribution of scores? By de�nition, the top
ranked entity has a better score than the second ranked one, but this tells
you nothing about the magnitude of the di�erence between them. Are
they virtually tied, or is #1 crushing it?

Di�erences in rankings appearto be linear: the di�erence between 1 and 2
seems the same as the di�erence between 111 and 112. But this is not gen-
erally true in scoring systems. Indeed, small absolute scoring di�erences
can often yield big ranking di�erences.

� Do you care about the extremes or the middle?Well-designed scoring sys-
tems often have a bell-shaped distribution. With the scores concentrated
around the mean, small di�erences in score can mean large di�erences in
rank. In a normal distribution, increasing your score from the mean by
one standard deviation (� ) moves you from the 50th percentile to the 84th
percentile. But the same sized change from 1� to 2� takes you only from
the 84th to 92.5th percentile.

So when an organization slips from �rst to tenth, heads should roll. But
when Stony Brook's team slides from 111th to 120th, it likely represents
an insigni�cant di�erence in score and should be discounted. Rankings
are good at highlighting the very best and very worst entities among the
group, but less so the di�erences near the median.

4.2.3 Recognizing Good Scoring Functions

Good scoring functions are good because they are easily interpretable and gen-
erally believable. Here we review the properties of statistics which point in these
directions:
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� Easily computable: Good statistics can be easily described and presented.
BMI is an excellent example: it contains only two parameters, and is eval-
uated using only simple algebra. It was found as the result of a search
through all simple functional forms on a small number of easily obtained,
relevant variables. It is an excellent exercise to brainstorm possible statis-
tics from a given set of features on a data set you know well, for practice.

� Easily understandable: It should be clear from the description of the
statistics that the ranking is relevant to the question at hand. \Mass
adjusted by height" explains why BMI is associated with obesity. Clearly
explaining the ideas behind your statistic is necessary for other people to
trust it enough to use.

� Monotonic interpretations of variables: You should have a sense of how
each of the features used in your scoring function correlate with the ob-
jective. Mass should correlate positively with BMI, because being heavy
requires that you weigh a lot. Height shouldcorrelate negatively, because
tall people naturally weigh more than short people.

Generally speaking, you are producing a scoring function without an ac-
tual gold standard to compare against. This requires understanding what
your variables mean, so your scoring function will properly correlate with
this mushy objective.

� Produces generally satisfying results on outliers: Ideally you know enough
about certain individual points to have a sense of where they belong in
any reasonable scoring system. If I am truly surprised by the identity
of the top entities revealed by the scoring system, it probably is a bug,
not a feature. When I compute the grades of the students in my courses,
I already know the names of several stars and several bozos from their
questions in class. If my computed grades do not grossly correspond to
these impressions, there is a potential bug that needs to be tracked down.

If the data items really are completely anonymous to you, you probably
should spend some time getting to know your domain better. At the very
least, construct arti�cial examples (\Superstar" and \Superdork") with
feature values so that they should be near the top and bottom of the
ranking, and then see how they �t in with the real data.

� Uses systematically normalized variables: Variables drawn from bell-
shaped distributions behave sensibly in scoring functions. There will be
outliers at the tails of either end which correspond to the best/worst items,
plus a peak in the middle of items whose scores should all be relatively
similar.

These normally-distributed variables should be turned into Z-scores (see
Section 4.3) before adding them together, so that all features have compa-
rable means and variance. This reduces the scoring function's dependence
on magic constants to adjust the weights, so no single feature has too
dominant an impact on the results.
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Figure 4.4: Taking the Z-scores of a set of valuesB normalizes them to have
mean � = 0 and � = 1.

Generally speaking, summing up Z-scores using the correct signs (plus for
positively correlated variables and minus for negative correlations) with
uniform weights will do roughly the right thing. A better function might
weigh these variables by importance, according to the strength of the
correlation with the target. But it is unlikely to not make much di�erence.

� Breaks ties in meaningful ways: Ranking functions are of very limited
value when there are bunches of ties. Ranking the handiness of people by
how many �ngers they have won't be very revealing. There will be a very
select group with twelve, a vast majority tied with ten, and then small
groups of increasingly disabled accident victims until we get down to zero.

In general, scores should be real numbers over a healthy range, in order to
minimize the likelihood of ties. Introducing secondary features to break
ties is valuable, and makes sense provided these features also correlate
with the property you care about.

4.3 Z-scores and Normalization

An important principle of data science is that we must try to make it as easy
as possible for our models to do the right thing. Machine learning techniques
like linear regression purport to �nd the line optimally �tting to a given data
set. But it is critical to normalize all the di�erent variables to make their
range/distribution comparable before we try to use them to �t something.

Z-scoreswill be our primary method of normalization. The Z-score transform
is computed:

Z i = ( ai � � )=�

where� is the mean of the distribution and � the associated standard deviation.
Z-scores transform arbitrary sets of variables to a uniform range. The Z-

scores of height measured in inches will be exactly the same as that of the
height measured in miles. The average value of a Z-score over all points is zero.
Figure 4.4 shows a set of integers reduced to Z-scores. Values greater than the
mean become positive, while those less than the mean become negative. The
standard deviation of the Z-scores is 1, so all distributions of Z-scores have
similar properties.

Transforming values to Z-scores accomplishes two goals. First, they aid in
visualizing patterns and correlations, by ensuring that all �elds have an identical
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mean (zero) and operate over a similar range. We understand that a Z-score of
3.87 must represent basketball-player level height in a way that 79.8 does not,
without familiarity with the measurement unit (say inches). Second, the use
of Z-scores makes it easier on our machine learning algorithms, by making all
di�erent features of a comparable scale.

In theory, performing a linear transformation like the Z-score doesn't really
do anything that most learning algorithms couldn't �gure out by themselves.
These algorithms generally �nd the best coe�cient to multiply each variable
with, which is free to be near � if the algorithm really wants it to be.

However, the realities of numerical computation kick in here. Suppose we
were trying to build a linear model on two variables associated with U.S. cities,
say, area in square miles and population. The �rst has a mean of about 5 and a
max around 100. The second has a mean about 25,000 and a max of 8,000,000.
For the two variables to have a similar e�ect on our model, we must divide the
second variable by a factor of 100,000 or so.

This causes numerical precision problems, because a very small change in the
value of the coe�cient causes a very large change in how much the population
variable dominates the model. Much better would be to have the variables be
grossly the same scale and distribution range, so the issue is whether one feature
gets weighted, say, twice as strongly as another.

Z-scores are best used on normally distributed variables, which, after all, are
completely described by mean� and standard deviation � . But they work less
well when the distribution is a power law. Consider the wealth distribution in the
United States, which may have a mean of (say) $200,000, with a� = $200; 000.
The Z-score of $80 billion dollar Bill Gates would then be 4999, still an incredible
outlier given the mean of zero.

Your biggest data analysis sins will come in using improperly normalized
variables in your analysis. What can we do to bring Bill Gates down to size?
We can hit him with a log, as we discussed in Section 2.4.

4.4 Advanced Ranking Techniques

Most bread-and-butter ranking tasks are solved by computing scores as linear
combinations of features, and then sorting them. In the absence of any gold
standard, these methods produce statistics which are often revealing and infor-
mative.

That said, several powerful techniques have been developed to compute rank-
ings from speci�c types of inputs: the results of paired comparisons, relationship
networks, and even assemblies of other rankings. We review these methods here,
for inspiration.

4.4.1 Elo Rankings

Rankings are often formed by analyzing sequences of binary comparisons, which
arise naturally in competitions between entities:



4.4. ADVANCED RANKING TECHNIQUES 105

� Sports contest results: Typical sporting events, be they football games or
chess matches, pit teamsA and B against each other. Only one of them
will win. Thus each match is essentially a binary comparison of merit.

� Votes and polls: Knowledgeable individuals are often asked to compare
options and decide which choice they think is better. In an election, these
comparisons are called votes. A major component of certain university
rankings come from asking professors: which school is better,A or B ?

In the movie The Social Network, Facebook's Mark Zuckerberg is shown
getting his start with FaceMash, a website showing viewers two faces and
asking them to pick which one is more attractive. His site then ranked all
the faces from most to least attractive, based on these paired comparisons.

� Implicit comparisons: From the right vantage point, feature data can be
meaningfully interpreted as pairwise comparisons. Suppose a student has
been accepted by both universitiesA and B , but opts for A. This can be
taken as an implicit vote that A is better than B .

What is the right way to interpret collections of such votes, especially where
there are many candidates, and not all pairs of players face o� against each
other? It isn't reasonable to say the one with the most wins wins, because (a)
they might have competed in more comparisons than other players, and (b) they
might have avoided strong opponents and beaten up only inferior competition.

The Elo system starts by rating all players, presumably equally, and then
incrementally adjusts each player's score in response to the result of each match,
according to the formula:

r 0(A) = r (A) + k(SA � � A );

where

� r (A) and r 0(A) represent the previous and updated scores for playerA.

� k is a �xed parameter reecting the maximum possible score adjustment
in response to a single match. A small value ofk results in fairly static
rankings, while using too large ak will cause wild swings in ranking based
on the latest match.

� SA is the scoring result achieved by playerA in the match under consid-
eration. Typically, SA = 1 if A won, and SA = � 1 if A lost.

� � A was the expected result forA when competing againstB . If A has
exactly the same skill level asB , then presumably � A = 0. But suppose
that A is a champion andB is a beginner or chump. Our expectation is
that A should almost certainly win in a head-to-head matchup, so� A > 0
and is likely to be quite close to 1.
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Figure 4.5: The shape of the logit function, for three di�erent values for c.

All is clear here except how to determine� A . Given an estimate of the
probability that A beats B (PA>B ), then

� A = 1 � PA>B + ( � 1) � (1 � PA>B ):

This win probability clearly depends on the magnitude of the skill di�erence
between playersA and B , which is exactly what is supposed to be measured by
the ranking system. Thus x = r (A) � r (B ) represents this skill di�erence.

To complete the Elo ranking system, we need a way to take this real variable
x and convert it to a meaningful probability. This is an important problem we
will repeatedly encounter in this book, solved by a bit of mathematics called
the logit function.

The Logit Function

Suppose we want to take a real variable�1 < x < 1 and convert it to a
probability 0 � p � 1. There are many ways one might imagine doing this, but
a particularly simple transformation is p = f (x), where

f (x) =
1

1 + e� cx

The shape of the logit function f (x) is shown in Figure 4.5. Particularly
note the special cases at the mid and endpoints:

� When two players are of equal ability, x = 0, and f (0) = 1 =2, reects that
both players have an equal probability of winning.

� When player A has a vast advantage,x ! 1 , and f (1 ) = 1, de�ning
that A is a lock to win the match.
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Figure 4.6: Changes in ELO scores as a consequence of an unlikely chess tour-
nament.

� When player B has a vast advantage,x ! �1 , and f (�1 ) = 0, denoting
that B is a lock to win the match.

These are exactly the values we want ifx measures the skill di�erence between
the players.

The logit function smoothly and symmetrically interpolates between these
poles. The parameterc in the logit function governs how steep the transition
is. Do small di�erences in skill translate into large di�erences in the probability
of winning? For c = 0, the landscape is as at as a pancake:f (x) = 1 =2 for all
x. The larger c is, the sharper the transition, as shown in Figure 4.5. Indeed,
c = 1 yields a step function from 0 to 1.

Setting c = 1 is a reasonable start, but the right choice is domain speci�c.
Observing how often a given skill-di�erence magnitude results in an upset (the
weaker party winning) helps specify the parameter. The Elo Chess ranking
system was designed so thatr (A) � r (B ) = 400 means that A has ten times the
probability of winning than B .

Figure 4.6 illustrates Elo computations, in the context of a highly unlikely
tournament featuring three of the greatest chess players in history, and one low-
ranked patzer. Herek = 40, implying a maximum possible scoring swing of 80
points as a consequence of any single match. The standard logit function gave
Kasparov a probability of 0.999886 of beating Skiena in the �rst round, but
through a miracle akin to raising Lazarus the match went the other way. As a
consequence, 80 points went from Kasparov's ranking to mine.

On the other side of the bracket two real chess champions did battle, with the
more imaginable upset by Polgar moving only 55 points. She wiped the oor
with me the �nal round, an achievement so clearly expected that she gained
essentially zero rating points. The Elo method is very e�ective at updating
ratings in response to surprise, not just victory.
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Figure 4.7: Borda's method for constructing the consensus ranking of
f A; B; C; D; E g from a set of four input rankings, using linear weights.

4.4.2 Merging Rankings

Any single numeric feature f , like height, can seed
�

n
2

�
pairwise comparisons

among n items, by testing whether f (A) > f (B ) for each pair of items A and
B . We could feed these pairs to the Elo method to obtain a ranking, but this
would be a silly way to think about things. After all, the result of any such
analysis would simply reect the sorted order of f .

Integrating a collection of rankings by several di�erent features makes for a
more interesting problem, however. Here we interpret the sorted order of the
i th feature as de�ning a permutation Pi on the items of interest. We seek the
consensus permutationP, which somehow best reects all of the component
permutations P1; : : : ; Pk .

This requires de�ning a distance function to measure the similarity between
two permutations. A similar issue arose in de�ning the Spearman rank corre-
lation coe�cient (see Section 2.3.1), where we compared two variables by the
measure of agreement in the relative order of the elements.1

Borda's methodcreates a consensus ranking from multiple other rankings by
using a simple scoring system. In particular, we assign a cost or weight to each
of the n positions in the permutation. Then, for each of then elements, we sum
up the weights of its positions over all of thek input rankings. Sorting these n
scores determines the �nal consensus ranking.

All is now clear except for the mapping between positions and costs. The
simplest cost function assigni points for appearing in the i th position in each
permutation, i.e. we sum up the ranks of the element over all permutations.
This is what we do in the example of Figure 4.7. ItemA gets 3� 1 + 1 � 2 = 5
points on the strength of appearing �rst in three rankings and second in one.
Item C �nishes with 12 points by �nishing 2, 3, 3, and 4. The �nal consensus
ranking of f A; B; C; D; E g integrates all the votes from all input rankings, even
though the consensus disagrees at least in part with all four input rankings.

But it is not clear that using linear weights represents the best choice,
because it assumes uniform con�dence in our accuracy to position elements

1Observe the di�erence between a similarity measure and a distance metric. In correlation,
the scores get bigger as elements get more similar, while in a distance function the di�erence
goes to zero. Distance metrics will be discussed more thoroughly in Section 10.1.1.
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Figure 4.8: Equally-spaced values by the normal distribution are closer in the
middle than the ends, making appropriate weights for Borda's method.

throughout the permutation. Typically, we will know the most about the mer-
its of our top choices, but will be fairly fuzzy about exactly how those near the
middle order among themselves. If this is so, a better approach might be to
award more points for the distinction between 1st and 2nd than between 110th
and 111th.

This type of weighting is implicitly performed by a bell-shaped curve. Sup-
pose we samplen items at equal intervals from a normal distribution, as shown
in Figure 4.8. Assigning thesex values as the positional weights produces more
spread at the highest and lowest ranks than the center. The tail regions really
are as wide as they appear for these 50 equally-spaced points: recall that 95%
of the probability mass sits within 2� of the center.

Alternately, if our con�dence is not symmetric, we could sample from the
half-normal distribution, so the tail of our ranks is weighted by the peak of
the normal distribution. This way, there is the greatest separation among the
highest-ranked elements, but little distinction among the elements of the tail.

Your choice of weighting function here is domain dependent, so pick one that
seems to do a good job on your problem. Identifying the verybestcost function
turns out to be an ill-posed problem. And strange things happen when we try
to design the perfect election system, as will be shown in Section 4.6.

4.4.3 Digraph-based Rankings

Networks provide an alternate way to think about a set of votes of the form \A
ranks ahead ofB ." We can construct a directed graph/network where there is
a vertex corresponding to each entity, and a directed edge (A; B ) for each vote
that A ranks ahead ofB .

The optimal ranking would then be a permutation P of the vertices which
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Figure 4.9: Consistently ordered preferences yield an acyclic graph or DAG
(left). Inconsistent preferences result in directed cycles, which can be broken by
deleting small sets of carefully selected edges, here shown dashed (right).

violates the fewest number of edges, where edge (A; B ) is violated if B comes
before A in the �nal ranking permutation P.

If the votes were totally consistent, then this optimal permutation would
violate exactly zero edges. Indeed, this is the case when there are no directed
cycles in the graph. A directed cycle like (A; C ), (C; E), (E; A ) represents
an inherent contradiction to any rank order, because there will always be an
unhappy edge no matter which order you choose.

A directed graph without cycles is called adirected acyclic graphor DAG.
An alert reader with a bit of algorithms background will recall that �nding
this optimal vertex order is called topologically sorting the DAG, which can
be performed e�ciently in linear time. Figure 4.9 (left) is a DAG, and has
exactly two distinct orders consistent with the directed edges: f A; B; C; D; E g
and f A; C; B; D; E g.

However, it is exceedingly unlikely that a real set of features or voters will
all happen to be mutually consistent. The maximum acyclic subgraphproblem
seeks to �nd the smallest number of edges to delete to leave a DAG. Removing
edge (E; A ) su�ces in Figure 4.9 (right). Unfortunately, the problem of �nding
the best ranking here is NP-complete, meaning that no e�cient algorithm exists
for �nding the optimal solution.

But there are natural heuristics. A good clue as to where a vertexv belongs
is the di�erence dv between its in-degree and its out-degree. Whendv is highly
negative, it probably belongs near the front of the permutation, since it domi-
nates many elements but is dominated by only a few. One can build a decent
ranking permutation by sorting the vertices according to these di�erences. Even
better is incrementally inserting the most negative (or most positive) vertex v
into its logical position, deleting the edges incident onv, and then adjusting the
counts before positioning the next best vertex.
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4.4.4 PageRank

There is a di�erent and more famous method to order the vertices in a network
by importance: the PageRank algorithm underpinning Google's search engine.

The web is constructed of webpages, most of which contain links to other
webpages. Your webpage linking to mine is an implicit endorsement that you
think my page is pretty good. If it is interpreted as a vote that \you think my
page is better than yours," we can construct the network of links and treat it
as a maximum acyclic-subgraph problem, discussed in the previous subsection.

But dominance isn't really the right interpretation for links on the web.
PageRank instead rewards vertices which have the most in-links to it: if all
roads lead to Rome, Rome must be a fairly important place. Further, it weighs
these in-links by the strength of the source: a link to me from an important
page should count for more than one from a spam site.

The details here are interesting, but I will defer a deeper discussion to Section
10.4, when we discuss network analysis. However, I hope this brief introduction
to PageRank helps you appreciate the following tale.

4.5 War Story: Clyde's Revenge

During my sophomore year of high school, I had the idea of writing a program to
predict the outcome of professional football games. I wasn't all that interested
in football as a sport, but I observed several of my classmates betting their
lunch money on the outcome of the weekend football games. It seemed clear to
me that writing a program which accurately predicted the outcome of football
games could have signi�cant value, and be a very cool thing to do besides.

In retrospect, the program I came up with now seems hopelessly crude. My
program would average the points scored by teamx and the points allowed by
team y to predict the number of points x will score againsty.

Px =
((points scored by team x) + (points allowed by team y))

2 � (games played)

Py =
((points scored by team y) + (points allowed by team x))

2 � (games played)

I would then adjust these numbers up or down in response to other factors,
particularly home �eld advantage, round the numbers appropriately, and call
what was left my predicted score for the game.

This computer program, Clyde, was my �rst attempt to build a scoring
function for some aspect of the real world. It had a certain amount of logic
going for it. Good teams score more points than they allow, while bad teams
allow more points than they score. If teamx plays a teamy which has given up
a lot of points, then x should score more points againsty than it does against
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teams with better defenses. Similarly, the more points teamx has scored against
the rest of the league, the more points it is likely to score againsty.

Of course, this crude model couldn't capture all aspects of football reality.
Suppose teamx has been playing all sti�s thus far in the season, while teamy
has been playing the best teams in the league. Teamy might be a much better
team than x even though its record so far is poor. This model also ignores
any injuries a team is su�ering from, whether the weather is hot or cold, and
whether the team is hot or cold. It disregards all the factors that make sports
inherently unpredictable.

And yet, even such a simple model can do a reasonable job of predicting
the outcome of football games. If you compute the point averages as above,
and give the home team an additional three points as a bonus, you will pick
the winner in almost two-thirds of all football games. Compare this to the even
cruder model of ipping a coin, which predicts only half the games correctly.
That was the �rst major lesson Clyde taught me:

Even crude mathematical models can have real predictive power.

As an audacious 16 year-old, I wrote to our local newspaper,The New
Brunswick Home News, explaining that I had a computer program to predict
football game results and was ready to o�er them the exclusive opportunity to
publish my predictions each week. Remember that this was back in 1977, well
before personal computers had registered on the public consciousness. In those
days, the idea of a high school kid actuallyusing a computer had considerable
gee-whiz novelty value. To appreciate how much times have changed, check out
the article the paper published about Clyde and I in Figure 4.10.

I got the job. Clydepredicted the outcome of each game in the 1977 National
Football League. As I recall,Clyde and I �nished the season with the seemingly
impressive record of 135{70. Each week, they would compare my predictions
against those of the newspaper's sportswriters. As I recall, we all �nished within
a few games of each other, although most of the sportswriters �nished with
better records than the computer.

The Home Newswas so impressed by my work that they didn't renew me
the following season. However,Clyde's picks for the 1978 season were published
in the Philadelphia Inquirer, a much bigger newspaper. I didn't have the col-
umn to myself, though. Instead, the Inquirer included me among ten amateur
and professional prognosticators, or touts. Each week we had to predict the
outcomes of four games against the point spread.

The point spread in football is a way of handicapping stronger teams for
betting purposes. The point spread is designed to make each game a 50/50
proposition, and hence makes predicting the outcome of games much harder.

Clyde and I didn't do very well against the spread during the 1978 National
Football League season, and neither did most of the otherPhiladelphia Inquirer
touts. We predicted only 46% of our games correctly against the spread, a
performance good (or bad) enough to �nish 7th out of the ten published prog-
nosticators. Picking against the spread taught me a second major life lesson:
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Figure 4.10: My �rst attempt at mathematical modeling.
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Crude mathematical models do not have real predictive power when
there is real money on the line.

So Clyde was not destined to revolutionize the world of football prognosti-
cation. I pretty much forgot about it until I assigned the challenge of predicting
the Super Bowl as a project in my data science class. The team that got the
job was made up of students from India, meaning they knew much more about
cricket than American football when they started.

Still, they rose to the challenge, becoming fans as they built a large data
set on the outcome of every professional and college game played over the past
ten years. They did a logistic regression analysis over 142 di�erent features
including rushing, passing, and kicking yardage, time of possession, and number
of punts. They then proudly reported to me the accuracy of their model: correct
predictions on 51.52% of NFL games.

\ What!" I screamed, \That's terrible! " \Fifty percent is what you get by
ipping a coin. Try averaging the points scored and yielded by the two teams,
and give three points to the home team. How does that simple model do?"

On their data set, this Clyde-light model picked 59.02% of all games cor-
rectly, much much better than their sophisticated-looking machine learning
model. They had gotten lost in the mist of too many features, which were
not properly normalized, and built using statistics collected over too long a
history to be representative of the current team composition. Eventually the
students managed to come up with a PageRank-based model that did a little
bit better (60.61%), but Clyde did almost as well serving as a baseline model.

There are several important lessons here. First, garbage in, garbage out.
If you don't prepare a clean, properly normalized data set, the most advanced
machine learning algorithms can't save you. Second, simple scores based on a
modest amount of domain-speci�c knowledge can do surprisingly well. Further,
they help keep you honest. Build and evaluate simple, understandable baselines
before you invest in more powerful approaches. Clyde going baseline left their
machine learning model defenseless.

4.6 Arrow's Impossibility Theorem

We have seen several approaches to construct rankings or scoring functions from
data. If we have a gold standard reporting the \right" relative order for at least
some of the entities, then this could be used to train or evaluate our scoring
function to agree with these rankings to the greatest extent possible.

But without a gold standard, it can be shown that no best ranking system
exists. This is a consequence ofArrow's impossibility theorem, which proves
that no election system for aggregating permutations of preferences satis�es the
following desirable and innocent-looking properties:

� The system should be complete, in that when asked to choose between
alternatives A and B , it should say (1) A is preferred to B , (2) B is
preferred to A, or (3) there is equal preference between them.
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Voter Red Green Blue
x 1 2 3
y 2 3 1
z 3 1 2

Figure 4.11: Preference rankings for colors highlighting the loss of transitivity.
Red is preferred to green and green preferred to blue, yet blue is preferred to
red.

� The results should be transitive, meaning ifA is preferred to B , and B is
preferred to C, then A must be preferred to C.

� If every individual prefers A to B , then the system should preferA to B .

� The system should not depend only upon the preferences of one individual,
a dictator.

� The preference ofA compared to B should be independent of preferences
for any other alternatives, like C.

Figure 4.11 captures some of the avor of Arrow's theorem, and the non-
transitive nature of \rock-paper-scissors" type ordering. It shows three voters
(x, y, and z) ranking their preferences among colors. To establish the preference
among two colorsa and b, a logical system might compare how many permuta-
tions rank a before b as opposed tob before a. By this system, red is preferred
to green by x and y, so red wins. Similarly, green is preferred to blue byx and
z, so green wins. By transitivity, red should be preferred to blue by implication
on these results. Yety and z, prefer blue to red, violating an inherent property
we want our election system to preserve.

Arrow's theorem is very surprising, but does it mean that we should give up
on rankings as a tool for analyzing data? Of course not, no more than Arrow's
theorem means that we should give up on democracy. Traditional voting systems
based on the idea that themajority rules generally do a good job of reecting
popular preferences, once appropriately generalized to deal with large numbers
of candidates. And the techniques in this chapter generally do a good job of
ranking items in interesting and meaningful ways.

Take-Home Lesson: We do not seek correct rankings, because this is an ill-
de�ned objective. Instead, we seek rankings that are useful and interesting.

4.7 War Story: Who's Bigger?

My students sometimes tell me that I am history. I hope this isn't true quite
yet, but I am very interested in history, as is my former postdoc Charles Ward.
Charles and I got to chatting about who the most signi�cant �gures in history
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were, and how you might measure this. Like most people, we found our answers
in Wikipedia.

Wikipedia is an amazing thing, a distributed work product built by over
100,000 authors which somehow maintains a generally sound standard of accu-
racy and depth. Wikipedia captures an astonishing amount of human knowledge
in an open and machine-readable form.

We set about using the English Wikipedia as a data source to base historical
rankings on. Our �rst step was to extract feature variables from each person's
Wikipedia page that should clearly correlate with historical signi�cance. This
included features like:

� Length: Most signi�cant historical �gures should have longer Wikipedia
pages than lesser mortals. Thus article length in words provides a natural
feature reecting historical wattage, to at least some degree.

� Hits: The most signi�cant �gures have their Wikipedia pages read more
often than others, because they are of greater interest to a larger number
of people. My Wikipedia page gets hit an average of twenty times per day,
which is pretty cool. But Issac Newton's page gets hit an average of 7700
times per day, which is a hell of a lot better.

� PageRank: Signi�cant historical �gures interact with other signi�cant
historical �gures, which get reected as hyperlink references in Wikipedia
articles. This de�nes a directed graph where the vertices are articles, and
the directed edges hyperlinks. Computing the PageRank of this graph will
measure the centrality of each historical �gure, which correlates well with
signi�cance.

All told, we extracted six features for each historical �gure. Next, we normal-
ized these variables before aggregating, essentially by combining the underlying
rankings with normally-distributed weights, as suggested in Section 4.4.2. We
used a technique calledstatistical factor analysis related to principal component
analysis (discussed in Section 8.5.2), to isolate two factors that explained most
of the variance in our data. A simple linear combination of these variables gave
us a scoring function, and we sorted the scores to determine our initial ranking,
something we calledfame.

The top twenty �gures by our fame score are shown in Figure 4.12 (right).
We studied these rankings and decided that it didn't really capture what we
wanted it to. The top twenty by fame included pop musicians like Madonna
and Michael Jackson, and three contemporary U.S. presidents. It was clear that
contemporary �gures ranked far higher than we thought they should: our scoring
function was capturing current fame much more than historical signi�cance.

Our solution was to decay the scores of contemporary �gures to account
for the passage of time. That a current celebrity gets a lot of Wikipedia hits
is impressive, but that we still care about someone who died 300 years ago is
much more impressive. The top twenty �gures after age correction are shown
in Figure 4.12 (left).
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Signif Name

1 Jesus
2 Napoleon
3 William Shakespeare
4 Muhammad
5 Abraham Lincoln
6 George Washington
7 Adolf Hitler
8 Aristotle
9 Alexander the Great

10 Thomas Je�erson
11 Henry VIII
12 Elizabeth I
13 Julius Caesar
14 Charles Darwin
15 Karl Marx
16 Martin Luther
17 Queen Victoria
18 Joseph Stalin
19 Theodore Roosevelt
20 Albert Einstein

Fame Person

1 George W. Bush
2 Barack Obama
3 Jesus
4 Adolf Hitler
5 Ronald Reagan
6 Bill Clinton
7 Napoleon
8 Michael Jackson
9 W. Shakespeare
10 Elvis Presley
11 Muhammad
12 Joseph Stalin
13 Abraham Lincoln
14 G. Washington
15 Albert Einstein
16 John F. Kennedy
17 Elizabeth II
18 John Paul II
19 Madonna
20 Britney Spears

Figure 4.12: The top 20 historical �gures, ranked by signi�cance (left) and
contemporary fame (right).

Now this was what we were looking for! We validated the rankings using
whatever proxies for historical signi�cance we could �nd: other published rank-
ings, autograph prices, sports statistics, history textbooks, and Hall of Fame
election results. Our rankings showed a strong correlation against all of these
proxies.

Indeed, I think these rankings are wonderfully revealing. We wrote a book
describing all kinds of things that could be learned from them [SW13]. I proudly
encourage you to read it if you are interested in history and culture. The more
we studied these rankings, the more I was impressed in their general soundness.

That said, our published rankings did not meet with universal agreement.
Far from it. Dozens of newspaper and magazine articles were published about
our rankings, many quite hostile. Why didn't people respect them, despite our
extensive validation? In retrospect, most of the ack we �elded came for three
di�erent reasons:

� Di�ering implicit notions of signi�cance : Our methods were designed
to measurememe-strength, how successfully these historical �gures were
propagating their names though history. But many readers thought our
methods should capture notions of historicalgreatness. Who was most
important, in terms of changing the world? And do we mean world or
just the English-speaking world? How can there be no Chinese or Indian
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�gures on the list when they represent over 30% of the world's population?

We must agree on what we are trying to measure before measuring it.
Height is an excellent measure of size, but it does not do a good job of
capturing obesity. However, height is very useful to select players for a
basketball team.

� Outliers: Sni� tests are important to evaluating the results of an analysis.
With respect to our rankings, this meant checking the placement of people
we knew, to con�rm that they fell in reasonable places.

I felt great about our method's ranking of the vast majority of historical
�gures. But there were a few people who our method ranked higher than
any reasonable person would, speci�cally President George W. Bush (36)
and teenage TV star Hilary Du� (1626). One could look at these out-
liers and dismiss the entire thing. But understand that we ranked almost
850,000 historical �gures, roughly the population of San Francisco. A few
cherry-picked bad examples must be put in the proper context.

� Pigeonhole constraints: Most reviewers saw only the rankings of our top
100 �gures, and they complained about exactly where we placed people
and who didn't make the cut. The women's TV show The View com-
plained we didn't have enough women. I recall British articles complain-
ing we had Winston Churchill (37) ranked too low, South African articles
that thought we dissed Nelson Mandela (356), Chinese articles saying we
didn't have enough Chinese, and even a Chilean magazine whining about
the absence of Chileans.

Some of this reects cultural di�erences. These critics had a di�erent
implicit notion of signi�cance than reected by English Wikipedia. But
much of it reects the fact that there are exactly one hundred places in
the top 100. Many of the �gures they saw as missing were just slightly
outside the visible horizon. For every new person we moved into the top
hundred, we had to drop somebody else out. But readers almost never
suggested names that should be omitted, only those who had to be added.

What is the moral here? Try to anticipate the concerns of the audience for
your rankings. We were encouraged to explicitly call our measurememe-strength
instead of signi�cance. In retrospect, using this less-loaded name would have
permitted our readers to better appreciate what we were doing. We probably
also should have discouraged readers from latching on to our top 100 rankings,
and instead concentrate on relative orderings within groups of interest: who
were the top musicians, scientists, and artists? This might have proved less
controversial, better helping people build trust in what we were doing.

4.8 Chapter Notes

Langville and Meyer [LM12] provide a through introduction to most of the
ranking methods discussed here, including Elo and PageRank.
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One important topic not covered in this chapter is learning to rank methods,
which exploit gold standard ranking data to train appropriate scoring functions.
Such ground truth data is generally not available, but proxies can sometimes be
found. When evaluating search engines, the observation that a user clicked the
(say) fourth item presented to them can be interpreted as a vote that it should
have been higher ranked than the three placed above it. SVMrank [Joa02]
presents a method for learning ranking functions from such data.

The heuristic proposed minimizing edge conicts in a vertex order is due
to Eades et. al. [ELS93]. My presentation of Arrow's impossibility theorem is
based on notes from Watkins [Wat16].

The war stories of this chapter were drawn very closely from my books
Calculated Betsand Who's Bigger? Don't sue me for self-plagiarism.

4.9 Exercises

Scores and Rankings

4-1. [3] Let X represent a random variable drawn from the normal distribution de-
�ned by � = 2 and � = 3. Suppose we observeX = 5 :08. Find the Z-score of x,
and determine how many standard deviations away from the mean that x is.

4-2. [3] What percentage of the standard normal distribution ( � = 0, � = 1) is found
in each region?

(a) Z > 1:13.

(b) Z < 0:18.

(c) Z > 8.

(d) jZ j < 0:5.

4-3. [3] Amanda took the Graduate Record Examination (GRE), and scored 160 in
verbal reasoning and 157 in quantitative reasoning. The mean score for verbal
reasoning was 151 with a standard deviation of 7, compared with mean � = 153
and � = 7 :67 for quantitative reasoning. Assume that both distributions are
normal.

(a) What were Amanda's Z-scores on these exam sections? Mark these scores
on a standard normal distribution curve.

(b) Which section did she do better on, relative to other students?

(c) Find her percentile scores for the two exams.

4-4. [3] Identify three successful and well-used scoring functions in areas of personal
interest to you. For each, explain what makes it a good scoring function and
how it is used by others.

4-5. [5] Find a data set on properties of one of the following classes of things:

(a) The countries of the world.

(b) Movies and movie stars.

(c) Sports stars.
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(d) Universities.

Construct a sensible ranking function reecting quality or popularity. How well
is this correlated with some external measure aiming at a similar result?

4-6. [5] Produce two substantially di�erent but sensible scoring functions on the same
set of items. How di�erent are the resulting rankings? Does the fact that both
have to be sensible constrain rankings to be grossly similar?

4-7. [3] The scoring systems used by professional sports leagues to select the most
valuable player award winner typically involves assigning positional weights to
permutations speci�ed by voters. What systems do they use in professional
baseball, basketball, and football? Are they similar? Do you think they are
sensible?

Implementation Projects

4-8. [5] Use Elo ratings to rank all the teams in a sport such as baseball, football,
or basketball, which adjusts the rating in response to each new game outcome.
How accurately do these Elo ratings predict the results of future contests?

4-9. [5] Evaluate the robustness of Borda's method by applying k random swaps to
each of m distinct copies of the permutation p = f 1; 2; : : : ; ng. What is the
threshold where Borda's method fails to reconstruct p, as a function of n, k,
and m?

Interview Questions

4-10. [5] What makes a data set a gold standard?

4-11. [5] How can you test whether a new credit risk scoring model works?

4-12. [5] How would you forecast sales for a particular book, based on Amazon public
data?

Kaggle Challenges

4-13. Rating chess players from game positions.
https://www.kaggle.com/c/chess

4-14. Develop a �nancial credit scoring system.
https://www.kaggle.com/c/GiveMeSomeCredit

4-15. Predict the salary of a job from its ad.
https://www.kaggle.com/c/job-salary-prediction

https://www.kaggle.com/c/chess
https://www.kaggle.com/c/GiveMeSomeCredit
https://www.kaggle.com/c/job-salary-prediction


Chapter 5

Statistical Analysis

It is easy to lie with statistics, but easier to lie without them.

{ Frederick Mosteller

I will confess that I have never had a truly satisfying conversation with a statis-
tician. This is not completely for want of trying. Several times over the years
I have taken problems of interest to statisticians, but always came back with
answers like \You can't do it that way" or \But it's not independent," instead
of hearing \Here is the way you can handle it."

To be fair, these statisticians generally did not appreciate talking with me,
either. Statisticians have been thinking seriously about data for far longer than
computer scientists, and have many powerful methods and ideas to show for it.
In this chapter, I will introduce some of these important tools, like the de�nitions
of certain fundamental distributions and tests for statistical signi�cance. This
chapter will also introduce Baysian analysis, a way to rigorously assess how new
data should a�ect our previous estimates of future events.

Figure 5.1: The central dogma of statistics: analysis of a small random sample
enables drawing rigorous inferences about the entire population.
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Figure 5.1 illustrates the process of statistical reasoning. There is an un-
derlying population of possible things that we can potentially observe. Only a
relatively small subset of them are actually sampled, ideally at random, mean-
ing that we can observe properties of the sampled items. Probability theory
describes what properties our sample should have, given the properties of the
underlying population. But statistical inference works the other way, where we
try to deduce what the full population is like given analysis of the sample.

Ideally, we will learn to think like a statistician: enough so as to remain
vigilant and guard against overinterpretation and error, while retaining our
con�dence to play with data and take it where it leads us.

5.1 Statistical Distributions

Every variable that we observe de�nes a particular frequency distribution, which
reects how often each particular value arises. The unique properties of variables
like height, weight, and IQ are captured by their distributions. But the shapes
of these distributions are themselves not unique: to a great extent, the world's
rich variety of data appear only in a small number of classical forms.

These classical distributions have two nice properties: (1) they describe
shapes of frequency distributions that arise often in practice, and (2) they can
often be described mathematically using closed-form expressions with very few
parameters. Once abstracted from speci�c data observations, they becomeprob-
ability distributions , worthy of independent study.

Familiarity with the classical probability distributions is important. They
arise often in practice, so you should be on the look out for them. They give us
a vocabulary to talk about what our data looks like. We will review the most
important statistical distributions (binomial, normal, Poisson, and power law)
in the sections to follow, emphasizing the properties that de�ne their essential
character.

Note that your observed data does not necessarily arise from a particular
theoretical distribution just because its shape is similar. Statistical tests can
be used to rigorously prove whether your experimentally-observed data reects
samples drawn from a particular distribution.

But I am going to save you the trouble of actually running any of these tests.
I will state with high con�dence that your real-world data does notprecisely �t
any of the famous theoretical distributions.

Why is that? Understand that the world is a complicated place, which makes
measuring it a messy process. Your observations will probably be drawn from
multiple sample populations, each of which has a somewhat di�erent underlying
distribution. Something funny generally happens at the tails of any observed
distribution: a sudden burst of unusually high or low values. Measurements will
have errors associated with them, sometimes in weird systematic ways.

But that said, understanding the basic distributions is indeed very impor-
tant. Each classical distribution is classical for a reason. Understanding these
reasons tells you a lot about observed data, so they will be reviewed here.
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Figure 5.2: The binomial distribution can be used to model the distribution of
heads in 200 coin tosses withp = 0 :5 (left), and the number of blown lightbulbs
in 1000 events with failure probability p = 0 :001 (right).

5.1.1 The Binomial Distribution

Consider an experiment consisting of identical, independent trials which have
two possible outcomesP1 and P2, with the respective probabilities of p and
q = (1 � p). Perhaps your experiment is ipping fair coins, where the probability
of heads (p = 0 :5) is the same as getting tails (q = 0 :5). Perhaps it is repeatedly
turning on a light switch, where the probability of suddenly discovering that
you must change the bulb (p = 0 :001) is much less than that of seeing the light
(q = 0 :999).

The binomial distribution reports the probability of getting exactly x P1

events in the course ofn independent trials, in no particular order. Independence
is important here: we are assuming the probability of failure of a bulb has no
relation to how many times it has previously been used. The pdf for the binomial
distribution is de�ned by:

P(X = x) =
�

n
x

�
px (1 � p)(n � x )

There are several things to observe about the binomial distribution:

� It is discrete: Both arguments to the binomial distribution ( n and x) must
be integers. The smoothness of Figure 5.2 (left) is an illusion, because
n = 200 is fairly large. There is no way of getting 101.25 heads in 200
coin tosses.

� You probably can explain the theory behind it: You �rst encountered the
binomial distribution in high school. Remember Pascal's triangle? To end
up with exactly x heads in n ips in a particular sequence occurs with
probability px (1 � p)(n � x ) , for each of the

�
n
x

�
distinct ip sequences.

� It is sort of bell-shaped: For a fair coin (p = 0 :5), the binomial distribution
is perfectly symmetrical, with the mean in the middle. This is not true
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Figure 5.3: The probability density function (pdf) of the normal distribution
(left) with its corresponding cumulative density function (cdf) on right.

in the lightbulb case: if we only turn on the bulb n = 1000 times, the
most likely number of failures will be zero. This rings just half the bell
in Figure 5.2. That said, as n ! 1 we will get a symmetric distribution
peaking at the mean.

� It is de�ned using only two parameters: All we need are values ofp and
n to completely de�ne a given binomial distribution.

Many things can be reasonably modeled by the binomial distribution. Recall
the variance in the performance of ap = 0 :300 hitter discussed in Section 2.2.3.
There the probability of getting a hit with each trial was p = 0 :3, with n = 500
trials per season. Thus the number of hits per season are drawn from a binomial
distribution.

Realizing that it was a binomial distribution meant that we really didn't have
to use simulation to construct the distribution. Properties like the expected
number of hits � = np = 500 � 0:3 = 150 and its standard deviation � =p

npq =
p

500� 0:3 � 0:7 = 10:25 simply fall out of closed-form formulas that
you can look up when needed.

5.1.2 The Normal Distribution

A great many natural phenomenon are modeled by bell-shaped curves. Mea-
sured characteristics like height, weight, lifespan, and IQ all �t the same basic
scheme: the bulk of the values lie pretty close to the mean, the distribution is
symmetric, and no value is too extreme. In the entire history of the world, there
has never been either a 12-foot-tall man or a 140-year-old woman.

The mother of all bell-shaped curves is theGaussianor normal distribution ,
which is completely parameterized by its mean and standard deviation:

P(x) =
1

�
p

2�
e� (x � � )2 / 2� 2
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Figure 5.3 shows the pdf and cdf of the normal distribution. There are
several things to note:

� It is continuous: The arguments to the normal distribution (mean � and
standard deviation � ) are free to arbitrary real numbers, with the lone
constraint that � > 0.

� You probably can't explain where it comes from: The normal distribution
is a generalization of the binomial distribution, where n ! 1 and the
degree of concentration around the mean is speci�ed by the parameter� .
Take your intuition here from the binomial distribution, and trust that
Gauss got his calculations right: the great mathematician worked out
the normal distribution for his Ph.D. dissertation. Or consult any decent
statistics book if you are really curious to see where it comes from.

� It truly is bell-shaped: The Gaussian distribution is the platonic exam-
ple of a bell-shaped curve. Because it operates on a continuous variable
(like height) instead of a discrete count (say, the number of events) it
is perfectly smooth. Because it goes in�nitely in both directions, there
is no truncation of the tails at either end. The normal distribution is a
theoretical construct, which helps explain this perfection.

� It is also de�ned using only two parameters: However, these are di�erent
parameters than the binomial distribution! The normal distribution is
completely de�ned by its central point (given by the mean � ) and its
spread (given by the standard deviation � ). They are the only knobs we
can use to tweak the distribution.

What's Normal?

An amazing number of naturally-occurring phenomenon are modeled by the
normal distribution. Perhaps the most important one is measurement error.
Every time you measure your weight on a bathroom scale, you will get a some-
what di�erent answer, even if your weight has not changed. Sometimes the scale
will read high and other times low, depending upon room temperature and the
warping of the oor. Small errors are more likely than big ones, and slightly
high is just as likely as slightly low. Experimental error is generally normally
distributed as Gaussian noise.

Physical phenomenon like height, weight, and lifespan all have bell-shaped
distributions, by similar arguments. Yet the claim that such distributions are
normal is usually made too casually, without precisely specifying the underlying
population. Is human height normally distributed? Certainly not: men and
women have di�erent mean heights and associated distributions. Is male height
normally distributed? Certainly not: by including children in the mix and
shrinking senior citizens you again have the sum of several di�erent underlying
distributions. Is the height of adult males in the United States normal? No,
probably not even then. There are non-trivial populations with growth disorders
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Figure 5.4: The normal distribution implies tight bounds on the probability of
lying far from the mean. 68% of the values must lie within one sigma of the
mean, and 95% within 2� , and 99.7% within 3� .

like dwar�sm and acromegaly, that leave bunches of people substantially shorter
and taller than could be explained by the normal distribution.

Perhaps the most famous bell-shaped but non-normal distribution is that
of daily returns (percentage price movements) in the �nancial markets. A big
market crash is de�ned by a large percentage price drop: on October 10, 1987,
the Dow Jones average lost 22.61% of its value. Big stock market crashes occur
with much greater frequency than can be accurately modeled by the normal dis-
tribution. Indeed, every substantial market crash wipes out a certain number of
quants who assumed normality, and inadequately insured against such extreme
events. It turns out that the logarithm of stock returns proves to be normally
distributed, resulting in a distribution with far fatter tails than normal.

Although we must remember that bell-shaped distributions are not always
normal, making such an assumption is a reasonable way to start thinking in the
absence of better knowledge.

5.1.3 Implications of the Normal Distribution

Recall that the mean and standard deviation together always roughly charac-
terize any frequency distribution, as discussed in Section 2.2.4. But they do a
spectacularly good job of characterizing the normal distribution, because they
de�ne the normal distribution.

Figure 5.4 illustrates the famous 68%{95%{99% rule of the normal distribu-
tion. Sixty-eight percent of the probability mass must lie within the region � 1�
of the mean. Further, 95% of the probability is within 2 � , and 99.7% within
3� .

This means that values far from the mean (in terms of� ) are vanishingly
rare in any normally distributed variable. Indeed the term six sigma is used to
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connote quality standards so high that defects are incredibly rare events. We
want plane crashes to be six sigma events. The probability of a 6� event on the
normal distribution is approximately 2 parts per billion.

Intelligence as measured by IQ is normally distributed, with a mean of 100
and standard deviation � = 15. Thus 95% of the population lies within 2� of
the mean, from 70 to 130. This leaves only 2.5% of people with IQs above 130,
and another 2.5% below 70. A total of 99.7% of the mass lies within 3� of the
mean, i.e. people with IQs between 55 and 145.

So how smart is the smartest person in the world? If we assume a population
of 7 billion people, the probability of a randomly-selected person being smartest
is approximately 1:43 � 10� 10. This is about the same probability of a single
sample lying more than 6:5� from the mean. Thus the smartest person in the
world should have an IQ of approximately 197.5, according to this reckoning.

The degree to which you accept this depends upon how strongly you believe
that IQ really is normally distributed. Such models are usually in grave danger
of breaking down at the extremes. Indeed, by this model there is almost the
same probability of there being someone dumb enough to earn a negative score
on an IQ test.

5.1.4 Poisson Distribution

The Poisson distribution measures the frequency of intervals between rare events.
Suppose we model human lifespan by a sequence of daily events, where there
is a small but constant probability 1 � p that one happens to stop breathing
today. A lifespan of exactly n days means successfully breathing for each of
the �rst n � 1 days and then forever breaking the pattern on thenth day. The
probability of living exactly n days is given by P r (n) = pn � 1(1 � p), yielding
an expected lifespan

� =
1X

k=0

k � P r (k):

The Poisson distribution basically follows from this analysis, but takes a
more convenient argument thanp. Instead it is based on� , the average value of
the distribution. Since each p de�nes a particular value of � , these parameters
are in some sense equivalent, but the average is much easier to estimate or
measure. The Poisson distribution yields the very simple closed form:

P r (x) =
e� � � x

x!

Once you start thinking the right way, many distributions begin to look
Poisson, because they represent intervals between rare events.

Recall the binomial distribution lightbulb model from the previous section.
This made it easy to compute the expected number of changes in Figure 5.2
(right), but not the lifespan distribution, which is Poisson. Figure 5.5 plots the
associated Poisson distribution for� = 1=p = 1000, which shows that we should
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Figure 5.5: The lifespan distribution of lightbulbs with an expected life of � =
1000 hours, as modeled by a Poisson distribution.

Figure 5.6: The observed fraction of families with x kids (isolated points) is
accurately modeled by Poisson distribution, de�ned by an average of� = 2 :2
children per family (polyline).

expect almost all bulbs to glow for between 900 and 1100 hours before the dying
of the light.

Alternately, suppose we model the number of children by a process where
the family keeps having children until after one too many tantrums, bake sales,
or loads of laundry, a parent �nally cracks. \That's it! I've had enough of this.
No more!"

Under such a model, family size should be modeled as a Poisson distribution,
where every day there is a small but non-zero probability of a breakdown that
results in shutting down the factory.

How well does the \I've had it" model work to predict family size? The
polygonal line in Figure 5.6 represents the Poisson distribution with the param-
eter � = 2 :2, meaning families have an average of 2.2 kids. The points represent
the fraction of families with k children, drawn from the 2010 U.S. General Social
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Figure 5.7: The population of U.S. cities by decreasing rank (left). On the right
is the same data, now including the very largest cities, but plotted on a log-log
scale. That they sit on a line is indicative of a power law distribution.

Survey (GSS).
There is excellent agreement over all family sizes exceptk = 1, and frankly,

my personal experience suggests there are more singleton kids than this data
set represents. Together, knowing just the mean and the formula for Poisson
distribution enables us to construct a reasonable estimate of the real family-size
distribution.

5.1.5 Power Law Distributions

Many data distributions exhibit much longer tails than could be possible under
the normal or Poisson distributions. Consider, for example, the population of
cities. There were exactly 297 U.S. cities in 2014 with populations greater than
100,000 people, according to Wikipedia. The population of thekth largest city,
for 1 � k � 297 is presented in Figure 5.7 (left). It shows that a relatively
small number of cities have populations wildly dominating the rest. Indeed, the
seventeen largest cities have populations so large they have been clipped o� this
plot so that we can see the rest.

These cities have a mean population of 304,689, with a ghastly standard
deviation of 599,816. Something is wrong when the standard deviation is so
large relative to the mean. Under a normal distribution, 99.7% of the mass lies
within 3 � of the mean, thus making it unlikely that any of these cities would
have a population above 2.1 million people. Yet Houston has a population of
2.2 million people, and New York (at 8.4 million people) is more than 13� above
the mean! City populations are clearly not normally distributed. In fact, they
observe a di�erent distribution, called a power law.
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For a given variable X de�ned by a power law distribution,

P(X = x) = cx� �

This is parameterized by two constants: the exponent� and normalization
constant c.

Power law distributions require some thinking to properly parse. The total
probability de�ned by this distribution is the area under the curve:

A =
Z 1

x = �1
cx� � = c

Z 1

x = �1
x � �

The particular value of A is de�ned by the parameters � and c. The normal-
ization constant c is chosen speci�cally for a given� to make sure that A = 1,
as demanded by the laws of probability. Other than that, c is of no particular
importance to us.

The real action happens with � . Note that when we double the value of the
input (from x to 2x), we decrease the probability by a factor off = 2 � � . This
looks bad, but for any given � it is just a constant. So what the power law is
really saying is that the probability of a 2x-sized event is 2� times less frequent
than an x-sized event, for allx.

Personal wealth is well modeled by a power law, wheref � 0:2 = 1=5. This
means that over a large range, ifZ people havex dollars, then Z=5 people have
2x dollars. One �fth as many people have $200,000 than have $100,000. If there
are 625 people in the world worth $5 billion, then there should be approximately
125 multi-billionaires each worth $10 billion. Further, there should be 25 super-
billionaires each worth $20 billion, �ve hyper-billionaires at the $40 billion level,
and �nally a single Bill Gates worth $80 billion.

Power laws de�ne the \80/20" rules which account for all the inequality of
our world: the observation that the top 20% of the A gets fully 80% of the
B . Power laws tend to arise whenever the rich get richer, where there is an
increasing probability you will get more based on what you already have. Big
cities grow disproportionately large because more people are attracted to cities
when they are big. Because of his wealth, Bill Gates gets access to much better
investment opportunities than I do, so his money grows faster than mine does.

Many distributions are de�ned by such preferential growth or attachment
models, including:

� Internet sites with x users: Websites get more popular because they have
more users. You are more likely to join Instagram or Facebook because
your friends have already joined Instagram or Facebook. Preferential at-
tachment leads to a power law distribution.

� Words used with a relative frequency ofx: There is a long tail of millions
of words like algorist or defenestrate1 that are rarely used in the English

1Defenestrate means \to throw someone out a window."
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language. On the other hand, a small set of words likethe are used wildly
more often than the rest.

Zipf 's law governs the distribution of word usage in natural languages, and
states that the kth most popular word (as measured by frequency rank)
is used only 1=kth as frequently as the most popular word. To gauge how
well it works, consider the ranks of words based on frequencies from the
English Wikipedia below:

It should be convincing that frequency of use drops rapidly with rank:
recall that grandmomis only a slang form ofgrandma, not the real McCoy.

Why is this a power law? A word of rank 2x has a frequency ofF2x �
F1=2x, compared to Fx � F1=x. Thus halving the rank doubles the fre-
quency, and this corresponds to the power law with� = 1.

What is the mechanism behind the evolution of languages that lead to this
distribution? A plausible explanation is that people learn and use words
because they hear other people using them. Any mechanism that favors
the already popular leads to a power law.

� Frequency of earthquakes of magnitudex: The Richter scale for measuring
the strength of earthquakes is logarithmic, meaning a 5.3 quake is ten times
stronger than a 4.3 scale event. Adding one to the magnitude multiplies
the strength by a factor of ten.

With such a rapidly increasing scale it makes sense that bigger events
are rarer than smaller ones. I cause a 0.02 magnitude quake every time
I ush a toilet. There are indeed billions of such events each day, but
larger quakes get increasingly rare with size. Whenever a quantity grows
in a potentially unbounded manner but the likelihood it does diminishes
exponentially, you get a power law. Data shows this is as true of the energy
released by earthquakes as it is with the casualties of wars: mercifully the
number of conicts which kill x people decreases as a power law.

Learn to keep your eyes open for power law distributions. You will �nd them
everywhere in our unjust world. They are revealed by the following properties:

� Power laws show as straight lines on log value, log frequency plots: Check
out the graph of city populations in Figure 5.7 (right). Although there are
some gaps at the edges where data gets scarce, by and large the points lie

Rank Word Count
1 the 25131726

110 even 415055
212 men 177630
312 least 132652
412 police 99926
514 quite 79205
614 include 65764
714 knowledge 57974
816 set 50862
916 doctor 46091

Rank Word Count
1017 build 41890
2017 essential 21803
3018 sounds 13867
4018 boards 9811
5018 rage 7385
6019 occupied 5813
7020 continually 4650
8020 delay 3835
9021 delayed 3233

10021 glances 2767

Rank Word Count
10021 glances 2767
20026 ecclesiastical 881
30028 zero-sum 405
40029 excluded 218
50030 sympathizes 124
60034 capon 77
70023 “bs 49
80039 conventionalized 33
90079 grandmom 23

100033 slum-dwellers 17



132 CHAPTER 5. STATISTICAL ANALYSIS

neatly on a line. This is the main characteristic of a power law. By the
way, the slope of this line is determined by� , the constant de�ning the
shape of the power law distribution.

� The mean does not make sense: Bill Gates alone adds about $250 to the
wealth of the average person in the United States. This is weird. Under a
power law distribution there is a very small but non-zero probability that
someone will have in�nite wealth, so what does this do to the mean? The
median does a much better job of capturing the bulk of such distributions
than the observed mean.

� The standard deviation does not make sense: In a power law distribution,
the standard deviation is typically as large or larger than the mean. This
means that the distribution is very poorly characterized by � and � , while
the power law provides a very good description in terms of� and c.

� The distribution is scale invariant: Suppose we plotted the populations
of the 300th through 600th largest U.S. cities, instead of the top 300 as
in Figure 5.7 (left). The shape would look very much the same, with the
population of the 300th largest city towering over the tail. Any exponential
function is scale invariant, because it looks the same at any resolution.
This is a consequence of it being a straight line on a log-log plot: any
subrange is a straight line segment, which has the same parameters in its
window as the full distribution.

Take-Home Lesson: Be on the lookout for power law distributions. They reect
the inequalities of the world, which means that they are everywhere.

5.2 Sampling from Distributions

Sampling points from a given probability distribution is a common operation,
one which it is pays to know how to do. Perhaps you need test data from a power
law distribution to run a simulation, or to verify that your program operates
under extreme conditions. Testing whether your data in fact �ts a particular
distribution requires something to compare it against, and that should generally
be properly-generated synthetic data drawn from the canonical distribution.

There is a general technique for sampling from any given probability distri-
bution, called inverse transform sampling. Recall that we can move between
the probability density function P and the cumulative density function C by
integration and di�erentiation. We can move back and forth between them
because:

P(k = X ) = C0(k) = C(X � k + � ) � C(X � k), and
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Figure 5.8: The inverse transform sampling method enables us to convert a
random number generated uniformly from [0; 1] (here 0.729) to a random sample
drawn from any distribution, given its cdf.

C(X � k) =
Z k

x = �1
P(X = x):

Suppose I want to sample a point from this possibly very complicated distri-
bution. I can use a uniform random number generator to select a valuep in the
interval [0; : : : ; 1]. We can interpret p as a probability, and use it as an index
on the cumulative distribution C. Precisely, we report the exact value ofx such
that C(X � x) = p.

Figure 5.8 illustrates the approach, here sampling from the normal distri-
bution. Supposep = 0 :729 is the random number selected from our uniform
generator. We return the x value such that y = 0 :729, sox = 0 :62 as per this
cdf.

If you are working with a popular probability distribution in a well-supported
language like Python, there is almost certainly a library function to generate
random samples already available. So look for the right library before you write
your own.

5.2.1 Random Sampling beyond One Dimension

Correctly sampling from a given distribution becomes a very subtle problem
once you increase the number of dimensions. Consider the task of sampling
points uniformly from within a circle. Think for a moment about how you
might do this before we proceed.
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Figure 5.9: Randomly generating 10,000 points by angle-radius pairs clearly
oversamples near the origin of the circle (left). In contrast, Monte Carlo sam-
pling generates points uniformly within the circle (right).

The clever among you may hit upon the idea of sampling the angle and
distance from the center independently. The angle that any sampled point
must make with respect to the origin and positive x-axis varies between 0 and
2� . The distance from the origin must be a value between 0 andr . Select these
coordinates uniformly at random and you have a random point in the circle.

This method is clever, but wrong. Sure, any point so created must lie within
the circle. But the points are not selected with uniform frequency. This method
will generate points where half of them will lie within a distance of at most r=2
from the center. But most of the area of the circle is farther from the center
than that! Thus we will oversample near the origin, at the expense of the mass
near the boundary. This is shown by Figure 5.9 (left), a plot of 10,000 points
generated using this method.

A dumb technique that proves correct is Monte Carlo sampling. The x and
y coordinates of every point in the circle range from� r to r , as do many points
outside the circle. Thus sampling these values uniformly at random gives us
a point which lies in a bounding box of the circle, but not always within the
circle itself. This can be easily tested: is the distance from (x; y) to the origin
at most r , i.e. is

p
x2 + y2 � r ? If yes, we have found a random point in the

circle. If not, we toss it out and try again. Figure 5.9 (right) plots 10,000 points
constructed using this method: see how uniformly they cover the circle, without
any obvious places of over- or under-sampling.

The e�ciency here depends entirely upon the ratio of the desired region
volume (the area of the circle) to the volume of the bounding box (the area of
a square). Since 78.5% of this bounded box is occupied by the circle, less than
two trials on average su�ce to �nd each new circle point.
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Figure 5.10: Correlation vs. causation: the number of Computer Science Ph.Ds
awarded each year in the United States strongly correlates with video/pinball
arcade revenue. (from [Vig15])

5.3 Statistical Signi�cance

Statisticians are largely concerned with whether observations on data are signi�-
cant. Computational analysis will readily �nd a host of patterns and correlations
in any interesting data set. But does a particular correlation reect a real phe-
nomena, as opposed to just chance? In other words, when is an observation
really signi�cant ?

Su�ciently strong correlations on large data sets may seem to be \obviously"
meaningful, but the issues are often quite subtle. For one thing,correlation does
not imply causation. Figure 5.10 convincingly demonstrates that the volume of
advanced study in computer science correlates with how much video games are
being played. I'd like to think I have driven more people to algorithms than
Nintendo, but maybe this is just the same thing? The graphs of such spurious
correlations literally �ll a book [Vig15], and a very funny one at that.

The discipline of statistics comes into its own in making subtle distinctions
about whether an observation is meaningful or not. The classical example comes
from medical statistics, in determining the e�cacy of drug treatments. A phar-
maceutical company conducts an experiment comparing two drugs. DrugA
cured 19 of 34 patients. DrugB cured 14 of 21 patients. Is drugB really better
than drug A? FDA approval of new drugs can add or subtract billions from the
value of drug companies. But can you be sure that a new drug represents a real
improvement? How do you tell?

5.3.1 The Signi�cance of Signi�cance

Statistical signi�cance measures our con�dence that there is a genuine di�erence
between two given distributions. This is important. But statistical signi�cance
does not measure the importance or magnitude of this di�erence. For large
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