Assignment 1: Introduction to R

This assignment is an opportunity to try the R statistical package and to start to learn some of its behaviors and options.

Text like this will be general comments.

Text like this will be my commands to R, usually preceded by a "greater than" sign (>).

Text like this will be output from R in my examples.

Text like this will be problems for you to do and turn in. (There are 7 in all.)
You will need to do this (and most other) assignments on a computer with R installed. Most of the campus computer labs should have R already installed, but you can install it to a computer (Windows, Mac OS X, Linux) by going to the "Comprehensive R Archive Network" (CRAN) website: http://cran.us.r-project.org/. There are links to download pages for each of the above operating systems at the top of the main CRAN page.

Windows users should select the base package and then download a file with a name like R-2.x.1-win32.exe. Running this file after you download it should install R. Mac users want a file named something like R-2.x.1.dmg. Linux users will have to find a similar file under the appropriate flavor of Linux. Please note, these instructions will be written for a Windows system. While you may use Mac OS X or Linux, there may be some differences that you will be responsible for handling.

Once R is installed, start it from the desktop icon or the Start–Programs menu. You will also need to open a word processor program such as Word. Be sure to put your name at the top of your assignment.

0. Assignment and basics

Assignment to an object name may be done using 1) an equals sign =, 2) a "left arrow" <- (less than, hyphen), or 3) a "right arrow" -> (hyphen, greater than).

You can type the name of any object to look at that object.

> n <- 15

> n

[1] 15

> a = 12

> a
[1] 12

> 24 -> z

> z

[1] 24

Variables must start with a letter, but may also contain numbers and periods. R is case sensitive.

> N <- 26.42

> N

[1] 26.42

> n

[1] 15

To see a list of your objects, use ls(). The () is required, even though there are no arguments.

> ls()

[1] "a" "n" "N" "z"

Use rm to delete objects you no longer need.

> rm(n)

> ls()
[1] "a" "N" "z"

You may see online help about a function using the help command or a question mark.

> ?ls

> help(rm)

Several commands are available to help find a command whose name you don't know. Note that anything after a pound sign (#) is a comment and will not have any effect on R.

> apropos(help)
"help" in name

[1] ".helpForCall" "help" "help.search" "help.start"

[5] "link.html.help"

> help.search("help")
"help" in name or summary; note quotes!

> help.start()
also remember the R Commands web page (link on
class page)

Other data types are available. You do not need to declare these; they will be assigned automatically.

> name <- "Mike"
Character data

> name
[1] "Mike"

> q1 <- TRUE

Logical data

> q1
[1] TRUE

> q2 <- F

> q2
[1] FALSE

1. Simple calculation

R may be used for simple calculation, using the standard arithmetic symbols +, -, *, /, as well as parentheses and ^ (exponentiation).

> a <- 12+14

> a

[1] 26

> 3*5

[1] 15

> (20-4)/2

[1] 8

> 7^2

[1] 49

Standard mathematical functions are available.

> exp(2)

[1] 7.389056

> log(10)
Natural log

[1] 2.302585

> log10(10)
Base 10

[1] 1

> log2(64)
Base 2

[1] 6

> pi

[1] 3.141593

> cos(pi)

[1] -1

> sqrt(100)

[1] 10

Problem 1: Use R as a calculator to compute the following values. After you do so, cut and paste your input and output from R to Word. Add numbering in Word to identify each part of each problem. (Do this for every problem from now on.)

(a) 27(38-17)

(b) ln(147​)
[image: image1.wmf]
(c)
[image: image2.wmf]12

436

2. Vectors

Vectors may be created using the c command, separating your elements with commas.

> a <- c(1, 7, 32, 16)

> a

[1] 1 7 32 16

Sequences of integers may be created using a colon (:).

> b <- 1:10

> b
 [1] 1 2 3 4 5 6 7 8 9 10

> c <- 20:15

> c

[1] 20 19 18 17 16 15

Other regular vectors may be created using the seq (sequence) and rep (repeat) commands.

> d <- seq(1, 5, by=0.5)

> d
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> e <- seq(0, 10, length=5)

> e
[1] 0.0 2.5 5.0 7.5 10.0

> f <- rep(0, 5)

> f
[1] 0 0 0 0 0

> g <- rep(1:3, 4)

> g

 [1] 1 2 3 1 2 3 1 2 3 1 2 3

> h <- rep(4:6, 1:3)

> h

[1] 4 5 5 6 6 6

Random vectors can be created with a set of functions that start with r, such as rnorm (normal) or runif (uniform).

> x <- rnorm(5)
Standard normal random variables

> x

[1] -1.4086632 0.3085322 0.3081487 0.2317044 -0.6424644

> y <- rnorm(7, 10, 3)
Normal r.v.s with mu = 10, sigma = 3

> y

[1] 10.407509 13.000935 8.438786 8.892890 12.022136 9.817101 9.330355

> z <- runif(10)
Uniform(0, 1) random variables

> z

 [1] 0.925665659 0.786650785 0.417698083 0.619715904 0.768478685 0.676038428

 [7] 0.050055548 0.727041628 0.008758944 0.956625536

If a vector is passed to an arithmetic calculation, it will be computed element-by-element.

> c(1, 2, 3) + c(4, 5, 6)

[1] 5 7 9
If the vectors involved are of different lengths, the shorter one will be repeated until it is the same length as the longer.

> c(1, 2, 3, 4) + c(10, 20)

[1] 11 22 13 24

> c(1, 2, 3) + c(10, 20)

[1] 11 22 13

Warning message:

longer object length

 is not a multiple of shorter object length in: c(1, 2, 3) + c(10, 20)

Basic mathematical functions will apply element-by-element.

> sqrt(c(100, 225, 400))

[1] 10 15 20

To select subsets of a vector, use square brackets ([]).

> d

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

> d[3]

[1] 2

> d[5:7]

[1] 3.0 3.5 4.0

A logical vector in the brackets will return the TRUE elements.

> d > 2.8

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> d[d > 2.8]

[1] 3.0 3.5 4.0 4.5 5.0

The number of elements in a vector can be found with the length command.

> length(d)

[1] 9

> length(d[d > 2.8])

[1] 5

Problem 2: Create the following vectors in R.

a = (5, 10, 15, 20, ..., 160)

b = (87, 86, 85, ..., 56)

Use vector arithmetic to multiply these vectors and call the result d. Select subsets of d to identify the following.

(a) What are the 19th, 20th, and 21st elements of d?

(b) What are all of the elements of d which are less than 2000?

(c) How many elements of d are greater than 6000?

3. Simple statistics

There are a variety of mathematical and statistical summaries which can be computed from a vector.

> 1:4

[1] 1 2 3 4

> sum(1:4)

[1] 10

> prod(1:4)

product

[1] 24

> max(1:10)

[1] 10

> min(1:10)

[1] 1

> range(1:10)

[1] 1 10

> X <- rnorm(10)

> X

 [1] 0.2993040 -1.1337012 -0.9095197 -0.7406619 -1.1783715 0.7052832

 [7] 0.4288495 -0.8321391 1.1202479 -0.9507774

> mean(X)

[1] -0.3191486

> sort(X)

 [1] -1.1783715 -1.1337012 -0.9507774 -0.9095197 -0.8321391 -0.7406619

 [7] 0.2993040 0.4288495 0.7052832 1.1202479
> median(X)

[1] -0.7864005

> var(X)

[1] 0.739266

> sd(X)

[1] 0.8598058

Problem 3: Using d from problem 2, use R to compute the following statistics of d:

(a) sum

(b) median

(c) standard deviation

4. Matrices

Matrices can be created with the matrix command, specifying all elements (column-by-column) as well as the number of rows and number of columns.

> A <- matrix(1:12, nr=3, nc=4)

> A

 [,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

You may also specify the rows (or columns) as vectors, and then combine them into a matrix using the rbind (cbind) command.

> a <- c(1,2,3)

> a
[1] 1 2 3

> b <- c(10, 20, 30)

> b
[1] 10 20 30

> c <- c(100, 200, 300)

> c
[1] 100 200 300

> d <- c(1000, 2000, 3000)

> d

[1] 1000 2000 3000

> B <- rbind(a, b, c, d)

> B
 [,1] [,2] [,3]

a 1 2 3

b 10 20 30

c 100 200 300

d 1000 2000 3000

> C <- cbind(a, b, c, d)

> C
 a b c d

[1,] 1 10 100 1000

[2,] 2 20 200 2000

[3,] 3 30 300 3000

To select a subset of a matrix, use the square brackets and specify rows before the comma, and columns after.

> C[1:2,]

 a b c d

[1,] 1 10 100 1000

[2,] 2 20 200 2000

> C[,c(1,3)]

 a c

[1,] 1 100

[2,] 2 200

[3,] 3 300

> C[1:2,c(1,3)]

 a c

[1,] 1 100

[2,] 2 200

Matrix multiplication is performed with the operator %*%. Remember that order matters!

> B%*%C

 a b c d

a 14 140 1400 1.4e+04

b 140 1400 14000 1.4e+05

c 1400 14000 140000 1.4e+06

d 14000 140000 1400000 1.4e+07

> C%*%B

 [,1] [,2] [,3]

[1,] 1010101 2020202 3030303

[2,] 2020202 4040404 6060606

[3,] 3030303 6060606 9090909

You may apply a summary function to the rows or columns of a matrix using the apply function.

> C

 a b c d

[1,] 1 10 100 1000

[2,] 2 20 200 2000

[3,] 3 30 300 3000

> sum(C)

[1] 6666

> apply(C, 1, sum)
sums of rows

[1] 1111 2222 3333

> apply(C, 2, sum)
sums of columns

 a b c d

 6 60 600 6000

Problem 4: Use R to create the following two matrices and do the indicated matrix multiplication.

[image: image3.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

´

ú

û

ù

ê

ë

é

21

14

9

3

20

13

8

2

19

12

7

1

13

4

2

12

9

7

What is the resulting matrix?

4.5 Mixed modes and data frames

All elements of a matrix must be the same mode (numeric, character, logical, etc.). If you try to put different modes in a matrix, all elements will be coerced to the most general – usually character.

> Name <- c("Bob", "Bill", "Betty")

> Test1 <- c(80, 95, 92)

> Test2 <- c(40, 87, 90)

> grades <- cbind(Name, Test1, Test2)

> grades

 Name Test1 Test2

[1,] "Bob" "80" "40"

[2,] "Bill" "95" "87"

[3,] "Betty" "92" "90"

The solution is another complex object called a data frame. The data frame views rows as cases and columns as variables. All elements in a column must be the same mode, but different columns may be different modes.

> grades.df <- data.frame(Name, Test1, Test2)

> grades.df
 Name Test1 Test2

1 Bob 80 40

2 Bill 95 87

3 Betty 92 90

Summary functions applied to a data frame will be applied to each column.

> mean(grades.df)

 Name Test1 Test2

 NA 89.00000 72.33333

Warning message:

argument is not numeric or logical: returning NA in: mean.default(X[[1]], ...)

> mean(grades.df[,2:3])

 Test1 Test2

89.00000 72.33333

Note: as similar as matrices and data frames appear, R considers them to be quite different. Many functions will work on one or the other, but not both. You can convert from one to the other using as.matrix or as.data.frame.

> C.df <- data.frame(a,b,c,d)

> C.df
 a b c d

1 1 10 100 1000

2 2 20 200 2000

3 3 30 300 3000

> C.df%*%B

Error in C.df %*% B : requires numeric matrix/vector arguments

> as.matrix(C.df)%*%B

 [,1] [,2] [,3]

1 1010101 2020202 3030303

2 2020202 4040404 6060606

3 3030303 6060606 9090909

> C

 a b c d

[1,] 1 10 100 1000

[2,] 2 20 200 2000

[3,] 3 30 300 3000

> mean(C)

[1] 555.5

> mean(as.data.frame(C))

 a b c d

 2 20 200 2000

Problem 5: The dataset RADIOLOGY may be found in the text datasets CD (from chapter 3 of text), contains hospital information for 31 months: visits to radiology, patient-days, ER visits, and clinic visits. Save this file and use read.table to import it into R. The dataset RADIOLOGY is listed below for your convenience:
 1 2317 5327 997 986

 2 2605 5617 1085 1105

 3 2364 5490 1061 998

 4 2975 6236 1129 1164

 5 2766 5877 1206 1104

 6 2762 6058 1295 908

 7 3020 6602 1274 1089

 8 2576 5644 1091 1041

 9 3329 6643 1396 1130

 10 2989 6284 1330 1192

 11 3068 6492 1405 1158

 12 3058 6379 1293 1127

 13 3252 6650 1487 1257

 14 3301 6600 1547 1255

 15 3314 6890 1466 1155

 16 3682 7309 1580 1356

 17 3325 6899 1441 1076

 18 3371 6463 1516 1048

 19 3835 7584 1804 1294

 20 3356 6505 1408 1043

 21 3631 7201 1479 1137

 22 3625 6579 1453 1310

 23 2797 4394 1489 1161

 24 3073 5351 1380 1083

 25 3455 6018 1464 1129

 26 3179 5848 1443 1080

 27 3450 5837 1400 1159

 28 3393 5772 1418 1231

 29 3093 6048 1445 1050

 30 3266 5864 1512 1195

 31 3476 6026 1589 1181
What are the means and standard deviations of the four data variables (excluding month)?

6. Graphics

R has functions to automatically plot many standard statistical graphics. Histograms and boxplots may be generated with hist and boxplot, respectively.

Once you have a graphic you're happy with, you can copy the entire thing. Make sure that the graphics window is the active (selected) window, and select "Copy to clipboard as bitmap" from the file menu. You can then paste your figure into Word and resize to taste.

> hist(iris$Petal.Length)

>

> hist(iris[,4])# alternative specification

[image: image4.emf]Histogram of iris$Petal.Length

iris$Petal.Length

Frequency

1 2 3 4 5 6 7

0

10

20

30

 [image: image5.png]Frequency

30

20

10

Histogram of iris[, 4]

> boxplot(iris$Petal.Length)

> boxplot(Petal.Length~Species, data=iris)
Formula description,

side-by-side boxplots
[image: image6.png]

 [image: image7.emf]setosa versicolor virginica

1

2

3

4

5

6

7

Problem 6: From the radiology data, examine the histograms and boxplots of clinic visits and radiology visits. (Note: these will be two separate boxplots, not a single side-by-side boxplot as above.)

7. Scatterplots and simple linear regression

Scatterplots may be produced by using the plot command. For separate vectors, the form is plot(x, y). For columns in a dataframe, the form is plot(yvar ~ xvar, data=dataframe).

> plot(iris$Petal.Length, iris$Petal.Width)

> plot(Petal.Width~Petal.Length, data=iris)

[image: image8.emf]1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

iris$Petal.Length

iris$Petal.Width

 [image: image9.emf]1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

Petal.Length

Petal.Width

Linear regression is done with the lm command, with a form similar to the second version of the scatterplot command.

> PetalReg <- lm(Petal.Width~Petal.Length, data=iris)

> summary(PetalReg)

Call:

lm(formula = Petal.Width ~ Petal.Length, data = iris)

Residuals:

 Min 1Q Median 3Q Max

-0.56515 -0.12358 -0.01898 0.13288 0.64272

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***

Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2065 on 148 degrees of freedom

Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266

F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
> abline(PetalReg)
add the regression line to the plot

[image: image10.emf]1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

Petal.Length

Petal.Width

Problem 7: From the radiology data, construct a scatterplot of clinic visits (x) versus radiology visits (y). Perform the simple linear regression of radiology visits on clinic visits and add the regression line to the plot. Briefly comment on the fit.

_1229343384.unknown

_1229348508.unknown

_1229343090.unknown

