Multivariate Normal Distribution Exercise

Given that

\[X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \sim \mathcal{N}_3(\mu, \Sigma) \]

where

\[\mu = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \]

and

\[\Sigma = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \]

Another way to write is \(\{X_1, X_2, X_3\} \sim \mathcal{N}_3(\mu, \Sigma) \)

1. Write down the density of \(f(X) \)
2. Find the correlation matrix \(\rho \) of \(X \)
3. Find the marginal distribution of \(X_2 \)
4. Find the marginal distribution of \(\{X_1, X_3\} \)
5. Find the marginal distribution of \(\{X_1, X_2\} \)
6. Find the conditional distribution of \(X_1|X_3 = -1 \)
7. Find the conditional distribution of \(X_1|\{X_2 = 1, X_3 = -1\} \)
8. Find the conditional distribution of \(\{X_1, X_2\}|X_3 = -1 \)
9. Is \(\{X_1, X_3\} \) and \(X_2 \) independent?
10. Is \(a_1X_1 + a_3X_3 \) and \(a_2X_2 \) independent for all constants \(a_1, a_2, \) and \(a_3? \)
11. Is \(X_1 + X_2 \) and \(X_1 - X_2 \) independent?
12. Let \(Y = AX + a \) where \(A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \) and \(a = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \). Find the distribution of \(Y \).
13. Let \(W = (X - \mu)'\Sigma^{-1}(X - \mu) \). What is the distribution, mean, and variance of \(W \)?
14. Find the 95% confidence ellipsoid for \(X \).
15. Let \(X^* = \begin{bmatrix} X_1 \\ X_3 \end{bmatrix} \). Find the 95% confidence ellipse for \(X^* \).
16. Draw the 95% confidence ellipse for \(X^* \) by finding the eigenvalues and eigenvectors first.
17. Let \(G \) be such that \(GG' = \Sigma^{-1} \). Show that \(G'X \sim \mathcal{N}_3(G'\mu, I) \) and \(G'(X - \mu) \sim \mathcal{N}_3(0, I) \).
 Hint: \((AB)^{-1} = B^{-1}A^{-1} \)